Advertisement

Hemodynamics and Therapy in Ards

  • W. M. Zapol
Part of the Developments in Critical Care Medicine and Anesthesiology book series (DCCA, volume 25)

Abstract

ARDS patients suffer from diffuse injury of the pulmonary microvasculature with increased permeability to plasma proteins. A definitive diagnosis of ARDS requires evidence of the following:
  1. a)

    increased venous admixture \( ({\rm{e}}{\rm{.g}}{\rm{.,\dot QS/\dot QT > 30}}\% {\rm{ or P}}_a {\rm{O}}_2 /{\rm{F}}_{{\rm{I }}} {\rm{O}}_2 < 250); \)

     
  2. b)

    acute bilateral diffuse radiographic infiltrates;

     
  3. c)

    an appropriate cause (see Table 1, not pulmonary embolism, atelectasis or congestive heart failure). Many clinicians lump diffuse pneumonia (bacterial, viral etc.) in the ARDS group. Sepsis syndrome and post-traumatic ARDS account for over half the ARDS patients in our ICU;

     
  4. d)

    a pulmonary capillary wedge pressure of less than 18 mmHg. Thus a Swan-Ganz catheter is necessary to make a definitive diagnosis (unless an LA line is present). Congestive heart failure and ARDS may be coincident. The precise causes for the development of ARDS in man are poorly understood and despite advanced supportive treatment with mechanical ventilation, diuretics and other pharmacological therapies to improve organ function, more than half of all ARDS patients will die (1).

     

Keywords

Acute Lung Injury Pulmonary Artery Pressure Acute Respiratory Failure Pulmonary Capillary Wedge Pressure Adult Respiratory Distress Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Montgomery B.A., Stager M.A., Carrico C.J., Hudson L.D.: Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Resp Dis 132:485–9, 1985PubMedGoogle Scholar
  2. 2.
    Zapol W.M., and Snider M.T.: Pulmonary hypertension in severe acute respiratory failure. N Engl J Med 296:476–80, 1977PubMedCrossRefGoogle Scholar
  3. 3.
    Zapol W.M., Snider M.T., Rie M., Frikker M., and Quinn D.: Pulmonary circulation during ARDS. In Acute Respiratory Failure, Zapol WM., Falke K. (eds.). In the series, Lung Biology in Health and Disease. New York, Marcel Dekker, 1985, pp 241–73Google Scholar
  4. 4.
    Radermacher P., Huet Y., Lemaire F.: Comparison of Ketanserin and sodium nitroprusside in patients with severe ARDS. Anesthesiology 68:152–7,1988PubMedCrossRefGoogle Scholar
  5. 5.
    Radermacher P., Borislav S., Wüst H.J., Tarnow J., Falke K.J.: Prostacyclin for the treatment of pulmonary hypertension in the adult respiratory distress syndrome: Effects on pulmonary capillary pressure and ventilation-perfusion distributions. Anesthesiology 72:238–44, 1990PubMedCrossRefGoogle Scholar
  6. 6.
    Frostell C., Fratacci M-O., Wain J.C., Jones R., Zapol W.M.: Inhaled nitric oxide: A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation (in press)Google Scholar
  7. 7.
    Falke K., et al: Am Rev Resp Dis 133 (Suppl May), 1991Google Scholar
  8. 8.
    Greene R., Boggis C.R.M., Jantsch H.S.: Radiography and angiography of the pulmonary circulation in AROS. In Acute Respiratory Failure, Zapol W.M., Falke K. (eds.). In the series, Lung Biology in Health and Disease. New York, Marcel Oekker, 1985, pp 275–302Google Scholar
  9. 9.
    Jones R., Reid L.M., Zapol W.M., et al: Pulmonary vascular pathology: human and experimental studies. In Acute Respiratory Failure, Zapol W.M., Falke K. (eds.). In the series, Lung Biology in HeaIth and Disease. New York, Marcel Dekker, 1985, pp 23–160Google Scholar
  10. 10.
    Tomashefski J.F., Zapol W.M. and Reid L.M.: The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 112:112–26,1983PubMedGoogle Scholar
  11. 11.
    Laver M.B., Strauss W.A., and Pohost G.M.: Right and left ventricular geometry: adjustments du ring acute respiratory failure. Crit Care Med 7:509–19,1979PubMedCrossRefGoogle Scholar
  12. 12.
    Rajagopalan B., Lowenstein E., Zapol W.M.: Cardiac function in the adult respiratory distress syndrome. In Acute Respiratory Failure, Zapol W.M., Falke K. (eds.). In the series, Lung Biology in HeaIth and Disease. New York, Marcel Dekker, 1985, pp 555–76Google Scholar
  13. 13.
    Sibbald W.J., Driedger A.A., Cunningham D.G., Cheung H.: Right and left ventricular performance in acute hypoxemic respiratory failure. Crit Care Med 1986; 14:852Google Scholar
  14. 14.
    Greene R., Lind S., Jantsch H., et al: Pulmonary vascular obstruction in severe AROS: angiographic alterations after i.v. fibrinolytic therapy. Am J Roentgenol 148:501–8, 1987Google Scholar
  15. 15.
    Simon R.H.: Predictors of the adult respiratory distress syndrome. J Crit Care 2:81–5,1987CrossRefGoogle Scholar
  16. 16.
    Meyrick B.O.: Endotoxin mediated pulmonary endothelial cell injury. Fed Proc 45:19,1986PubMedGoogle Scholar
  17. 17.
    Huttemeier P.C., Watkins W.D., Peterson M.B., Zapol W.M.: Acute pulmonary hypertension and lung thromboxane release following endotoxin infusion in normal and leukopenic sheep. Circ Res 50:688–94, 1982PubMedCrossRefGoogle Scholar
  18. 18.
    Beutler B., Cerami A.: Cachectin: More than a tumor necrosis factor. N Engl J Med 316:319, 1987Google Scholar
  19. 19.
    Tracy K., Lowry S.F., Fahey III, T.J., et al: Cachectin/tumor necrosis factor induces lethaI shock and stress hormone response in the dog. S Gyn Obst 164:415–22, 1987Google Scholar
  20. 20.
    Kreil E.A., Greene E., Fitzgibbon C., et al: Effects of recombinant human tumor necrosis factor alpha, lymphotoxin, and escheriehia coli lipopolysaccharide on hemodynamics, lung microvascular permeability, and eicosanoid synthesis in anesthetized sheep. Circ Res 65:502–14,1989PubMedCrossRefGoogle Scholar
  21. 21.
    Tracey K.J., Fong Y., Hesse D.G., et al: Anticachectin/TNF monoclonal antibodies prevent septic shock during lethai bacteraemia. Nature 330:662–4,1987PubMedCrossRefGoogle Scholar
  22. 22.
    Ziegler E.J., McCuthchan A., Fierer J., et al: Treatment of gram-negative bacteremia and shock with a human antiserum to a mutant Escherichia coli. N Engl J Med 307:1225–30, 1982PubMedCrossRefGoogle Scholar
  23. 23.
    Teng N.N., Kaplan H.S., Hebert J.M., et al: Protection against gramnegative bacteremia and endotoxemia with human monoc1onal IgM antibodies. Proc Natl Acad Sci 82:1790–94, 1985PubMedCrossRefGoogle Scholar
  24. 24.
    Feeley T.W., Minty B.O., Scudder C.M., et al: The effect of human antiendotoxin monoclonal antibodies on endotoxin induced lung injury in the rat. Am Rev Respir Dis 135:665–70, 1987PubMedGoogle Scholar
  25. 25.
    Ziegler E.J., Fisher, Jr., C.I., Sprung C.L., et al: Treatment of gramnegative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. N Eng J Med 1991;324:429–36Google Scholar
  26. 26.
    Bigatello L.M., Greene R.E., Sprung C.L., et al: A randomized trial of a human monoclonal antibody against endotoxin in sepsis: Effects on the adult respiratory distress syndrome. (Submitted)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • W. M. Zapol

There are no affiliations available

Personalised recommendations