Respiratory Control Related to Altitude and Anesthesia

  • J. W. Severinghaus
Part of the Developments in Critical Care Medicine and Anesthesiology book series (DCCA, volume 25)


This discussion includes a review of physiology and pharmacology of the normal and abnormal regulation of breathing as it relates to both anesthesia (1) and high altitude (2,3), and discusses several recent relevant advances in understanding. During days to weeks of hypoxia the ventilation is gradually stimulated not only by a fall of CSF Hco- 3 but also by a rise in hypoxic drive, probably due to a greater carotid body sensitivity. The central CO2 chemoreceptor neurons have been histologically identified in rats by c-fos staining after hypercapnia. They apparently generate acid in hypoxia which may be detected on the local surface in ECF. This presumed intracellular lactic acidosis may underlie hypoxic ventilatory depression, which occurs after 5–20 minutes of hypoxia. This complicates understanding of altitude acclimatization while offering new insight into the mechanism of CO2 and pH detection as a transmembrane pH gradient change. The effects of anesthesia on hypoxic response is in part due to the raising of PCO2 threshold by both the anesthetic and hypoxia and the flattening of CO2 response which hypoxia multiplies. After anesthesia, respiration may be compromised by interactions between the effects of residual depressant drugs, lack of lung-pump strength and airway patency, and hypoventilation at normal PCO2 due to repaying a deficit of body CO2 stores.


Carotid Body Ventilatory Response Peripheral Chemoreceptor Hypoxic Ventilatory Response Sustained Hypoxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hickey R.F., Severinghaus J.W.: Regulation of breathing: drug effects. In Regulation of Breathing, Hornbein T. (ed.). Part II. New York, M Dekker, 1981, pp 1251–1312Google Scholar
  2. 2.
    Cunningham D.J.C.: Integrative aspects of the regulation of breathing: A personal view. In Respiratory Physiology, Guyton and Widdicombe (eds.). Physiology Series 1, Vol 2, MTP International Review of Science. London, Butterworths, 1974, pp 303–370Google Scholar
  3. 3.
    Berger A., Mitchell R., Severinghaus J.W.: Regulation of respiration. N Eng J Med 297:92–97, 138–43, 194-201, 1977CrossRefGoogle Scholar
  4. 4.
    Mitchell R.A., Loeschcke H.H., Massion W.H., Severinghaus J.W.: Respiratory responses mediated through superficial chemosensitive areas on the medulla. J Appl Physiol 18:523–33, 1963Google Scholar
  5. 5.
    Schlafke M.E., See W.R., Loeschcke H.H.: Ventilatory response to alterations of H+ ion concentration in sm all areas of the ventral medullary surface. Resp Physiol 10:198–212, 1977CrossRefGoogle Scholar
  6. 6.
    Shams, H.: Differential effects of C02 and H+ as central stimuli of respiration in the cat. J Appl Physiol 58:257–364, 1985Google Scholar
  7. 7.
    Teppema, L.J., Barts P.W.J.A., Folgering H.T., Evers J.A.M.: Effect of respiratory and (isocapnic) metabolic arterial acid-base disturbances on medullary fluid pH and ventilation in cats. Resp Physiol 53:379–95, 1983CrossRefGoogle Scholar
  8. 8.
    Ahmad H.R., Loeschcke H.H.: Transient and steady state responses of pulmonary ventilation to the medullary extracellular pH after approximately rectangular changes in alveolar PC02. Pflügers Archiv 395:285–92,1982PubMedCrossRefGoogle Scholar
  9. 9.
    Irsigler G.B., Severinghaus J.W.: Respiratory regulation of cerebrospinal fluid and peripheral acid-base balance. In The Kidney: Physiology and Pathology of Electrolyte Metabolism, Seidin D.W., Giebisch G. (eds.). Boston, Raven Press, 1985, pp 1459–70Google Scholar
  10. 10.
    Feustel P.J., Stafford M.I., Allen J.S., Severinghaus J.W.: Ventrolateral medullary surface blood flow determined by hydrogen clearance. J Appl Physiol 56:150–54, 1984PubMedGoogle Scholar
  11. 11.
    Well J.V., Byme-Quinn E., Sodal I.D., et al: Hypoxic ventilatory drive in normal man. J Clin Invest 49:1061–72, 1970CrossRefGoogle Scholar
  12. 12.
    Severinghaus J.W., Bainton C.R., Carcelen A.: Respiratory insensitivity to hypoxia in chronically hypoxic man. Resp Physiol 1:308–34, 1966CrossRefGoogle Scholar
  13. 13.
    Rebuck A.S., Campbell E.J.M.: A clinical method for assessing the ventilatory response to hypoxia. Amer Rev Resp Dis 109:345–50, 1974PubMedGoogle Scholar
  14. 14.
    Mills E., Jöbsis, F.F.: Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol 35:405–28, 1972PubMedGoogle Scholar
  15. 15.
    Severinghaus J.W., Naifeh K.H., Koh S.O.: Errors during profound hypoxia in 14 pulse oximeters. J Clin Monit 5:72–81, 1989PubMedCrossRefGoogle Scholar
  16. 16.
    Well J.V., Zwillieh C.W.: Assessment of ventilatory response to hypoxia. Chest 70 (Suppl):124–28, 1976Google Scholar
  17. 17.
    Kagawa S., Stafford M.J., Waggener T.B., Severinghaus J.W.: No effect of naloxone on hypoxia induced ventilatory depression in adults. J Appl Physiol 52:1030–34,1982PubMedGoogle Scholar
  18. 18.
    Easton P.A., Anthonisen N.R.: Ventilatory response to sustained hypoxia after pretreatment with aminophylline. J Appl Physiol 64:1445–50,1988PubMedGoogle Scholar
  19. 19.
    Vizek M., Piekett C.K., Well, J.V.: Increased carotid body hypoxic sensitivity during acclimatization to hypobarie hypoxia. J Appl Physiol 63:2403–10,1987PubMedGoogle Scholar
  20. 20.
    Sato M.: Hypoxic ventilatory response during recovery period from sustained hypoxia. Jikeikai Medieal Journal 37:481–88, 1990Google Scholar
  21. 21.
    Van Beek J.H.G.M., Berkenbosch A., DeGoede J., Olievier C.N.: Effects of brain stern hypoxaemia on the regulation of breathing. Respiration Physiol 57:171–88,1984CrossRefGoogle Scholar
  22. 22.
    Neubauer J.A., Simohe A., Edelman N.H.: Role of brain lactic acidosis in hypoxic depression of respiration. J Appl Physiol 65:1324–31, 1988PubMedGoogle Scholar
  23. 23.
    Sørensen S.C., Cruz J.: Ventilatory response to a single breath of C02 in O2 in normal man at sea level and high aItitude. J Appl Physiol 27:186–90, 1969PubMedGoogle Scholar
  24. 24.
    Lahiri S.: Dynamic aspects of regulation of ventilation in man during aeclimatization to high aItitude. Resp Physiol 16:245–58, 1972CrossRefGoogle Scholar
  25. 25.
    Severinghaus J.W.: Hypoxic respiratory drive and its loss during chronie hypoxia. Clin Physiol (Japan) 2:57–79, 1972Google Scholar
  26. 26.
    Forster H.V., Dempsey J.A., Birnbaum M.L., Reddan W.G., Thoden J., Grover R.F., Rankin R.: Effeet of chronie exposure to hypoxia on ventilatory response to C02 and hypoxia. J Appl Physiol 31:586–92, 1971PubMedGoogle Scholar
  27. 27.
    Forster H.V., Dempsey J.A.: Ventilatory adaptations. In Regulation of Breathing, Hombein T (ed.). Part II. New York, M Dekker, pp 845–904Google Scholar
  28. 28.
    Tatsumi K., Piekett C.K., Well J.V.: Attenuated carotid body hypoxie sensitivity after prolonged hypoxic exposure. J Appl Physiol 70:748–55, 1991PubMedGoogle Scholar
  29. 29.
    Wade J.G., Larson C.P., Hiekey R.F., Ehrenfeld W.K., Severinghaus J.W.: Effect of carotid endartereetomy on carotid chemoreceptor and baroreceptor function in man. N Eng J Med 282:823–29, 1970CrossRefGoogle Scholar
  30. 30.
    Millhorn, D.E., Eldridge F.L., Kiley J.P., Waldrop T.J.: Prolonged inhibition of respiration following acute hypoxia in glomectomized eats. Resp Physiol 57: 331–40, 1984CrossRefGoogle Scholar
  31. 31.
    Stulbarg M.S., Winn W.R., Kellett L.E.: Bilateral earotid body resection for the relief of dyspnea in severe chronic obstructive pulmonary disease. Physiologic and clinical observations in three patients. Chest 95:1123–8, 1989 (with editorial: Severinghaus JW: Carotid body resection for COPD? Chest 95:1128-9, 1989)PubMedCrossRefGoogle Scholar
  32. 32.
    Severinghaus J.W., Mitchell R.A., Richardson B.W., Singer M.M.: Respiratory control at high altitude suggesting active transport regulation of CSF pH. J Appl Physiol 18:1155–66, 1963PubMedGoogle Scholar
  33. 33.
    Crawford R.D., Severinghaus J.W.: CSF pH and ventilatory acclimatization to altitude. J Appl Physiol 45:275–83, 1978PubMedGoogle Scholar
  34. 34.
    Eger E.I., Kellogg R.H., Mines A.H., Uma-Ostos M., Morrill C.G., Kent D.W.: Influence of C02 on ventilatory acclimatization to altitude. J Appl Physiol 24:607,1968PubMedGoogle Scholar
  35. 35.
    Forster H.V., Dempsey, J.A., Vidruk E., DoPico G.: Evidence of altered regulation of ventilation during exposure to hypoxia. Resp Physiol 20:379–92,1974CrossRefGoogle Scholar
  36. 36.
    Barnard P., Andronikou S., Pokorski M., Smatresk N., Mokashi A., Lahiri S.: Time-dependent effect of hypoxia on carotid body chemosensory function. J Appl Physiol 63: 685–91, 1987PubMedGoogle Scholar
  37. 37.
    Bisgard G.E., Kressin N.A., Nielsen A.M., Daristotle L., Smith C.A., Forster H.V.: Dopamine blockade alters ventilatory acclimatization to hypoxia in goats. Resp Physiol 69:245–55, 1987CrossRefGoogle Scholar
  38. 38.
    Nielsen A.M., Bisgard G.E., Vidruk E.H.: Carotid chemoreceptor activity during acute and sustained hypoxia in goats. J Appl Physiol 65:1796–1802, 1988PubMedGoogle Scholar
  39. 39.
    Engwall M.J.A., Bisgard G.E.: Ventilatory responses to chemoreceptor stimulation after hypoxic acclimatization in awake goats. J Appl Physiol 69:1236–43, 1990PubMedGoogle Scholar
  40. 40.
    Severinghaus J.W., Crawford R.D.: Carotid chemoreceptor role in CSF alkalosis at altitude. Chest 73:249–51, 1978PubMedCrossRefGoogle Scholar
  41. 41.
    Sato M., Severinghaus J.W., Basbaum A.I.: Medullary C02 chemoreceptor neurone identification by c-fos immunocytochemistry. FASEB Journal 5:4348, 1991Google Scholar
  42. 42.
    Nolan, W.F., Houck P.C., Thomas J.L., Davies D.G.: Ventral medullary extracellular fluid pH and blood flow during hypoxia. Am J Physiol 242 (Regulatory Integrative Comp Physiol 11): R159–R198, 1982Google Scholar
  43. 43.
    Kiwull-Schone H., Kiwull P.: Hypoxic modulation of central chemosensitivity. In Central Neurone Environment. (Schlafke M.E., Koepchen H.P., See W.R., eds.): Springer-Verlag, Berlin and Heidelberg 1983, pp 88–95Google Scholar
  44. 44.
    Brown D.L., Lawson E.E.: Brain stern extracellular fluid pH and respiratory drive during hypoxia in newborn pigs. J Appl Physiol 64: 1055–59, 1988PubMedCrossRefGoogle Scholar
  45. 45.
    Neubauer J.A., Melton J.E., Edelman N.H.: Modulation of respiration during brain hypoxia. J Appl Physiol 68:441–51, 1990PubMedGoogle Scholar
  46. 46.
    Javaheri S., Teppema L.J.: Ventral medullary extracellular fluid pH and PC02 during hypoxemia. J Appl Physiol 63(4):1567–71, 1987PubMedGoogle Scholar
  47. 47.
    Xu F., Severinghaus J.W., Spellman M., Sato M.: Hypoxia uniquely acidifies medullary ventral surface ECF. FASEB Journal 5:4342, 1991Google Scholar
  48. 48.
    Severinghaus J.W., Sato M., Powell F., Jensen J.B., Sperling B., Lassen N.A.: Altitude acclimatization slowly augments hypoxic responses of ventilation and cerebral circulation. Clin Res 39:387A, 1991Google Scholar
  49. 49.
    Easton P.A., Anthonisen N.R.: Ventilatory response to sustained hypoxia after pretreatment with aminophylline. J Appl Physiol 64:1445–50,1988PubMedGoogle Scholar
  50. 50.
    Naifeh K.H., Severinghaus J.W., Kamiya J., Krafft M.: Effect of aging on estimates of hypereapnic ventilatory response during sleep. J Appl Physiol 66:1956–64,1989PubMedGoogle Scholar
  51. 51.
    Knill R.L., Gelb A.W.: Ventilatory response to hypoxia and hypercapnia during halothane sedation and anesthesia in man. Anesthesiology 49:244–51,1978PubMedCrossRefGoogle Scholar
  52. 52.
    Weiskopf R.B., Raymond L.W., Severinghaus J.W.: Effects of halothane on canine respiratory response to hypoxia with and without hypercarbia. Anesthesiology 41:350–60,1974PubMedCrossRefGoogle Scholar
  53. 53.
    Salvatore A.J., Sullivan S.F., Papper E.M.: Postoperative hypoventilation and hypoxemia in man after hyperventilation. N Engl J Med 280:467–70, 1969PubMedCrossRefGoogle Scholar
  54. 54.
    Canel J., Rieos M., Vidal F.: Early postoperative arterial desaturation. Anesth Analg 69:207–12, 1989Google Scholar
  55. 55.
    Becker L.D., Paulson B.A., Miller R.D., Severinghaus J.W., Eger E.I.: Biphasic respiratory depression after fentanyl-droperidol or fentanyl alone used to supplement nitrous oxide anesthesia. Anesthesiology 44:291–95, 1976PubMedCrossRefGoogle Scholar
  56. 56.
    Steffey E.P., Jarvis K.A., Elliott A.R., Willits N., Wolliner M.J.: Morphine induced hypereapnia in anesthetized swine, monkeys and dogs. Physiologist 32:24.16 (A) 1989Google Scholar
  57. 57.
    Pietak S., Weenig C.S., Hickey R.F., Fairley H.B.: Anesthetic effects on ventilation in patients with ehronic obstructive pulmonary disease. Anesthesiology 42:160–66, 1975PubMedCrossRefGoogle Scholar
  58. 58.
    Johansen S.H., Osgood P.: Ventilatory reserve in the dog during partial curarization. Anesthesiology 33:222, 1970CrossRefGoogle Scholar
  59. 59.
    Cohen Y., Chang F.M., Litt L., Severinghaus J.W., Weinstein P.R., Davis R.L., James T.L.: Stability of brain intracellular lactate, and 31p metabolite levels at reduced intracellular pH during prolonged hypercapnia in rats. J Cereb Blood Flow Metab 10:277–84, 1990PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • J. W. Severinghaus

There are no affiliations available

Personalised recommendations