Skip to main content

From Time-Resolved Difference Spectra to Kinetics, Mechanism, and Thermodynamics in the Bacteriorhodopsin Photocycle

  • Conference paper
Membrane Proteins: Structures, Interactions and Models

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 25))

Abstract

Measurements of difference spectra at increasing times after photoexcitation allowed calculation of the component spectra and the kinetics of the bacteriorhodopsin photocycle. The data are consistent with a single reaction sequence which includes reversible internal proton transfer reactions and two consecutive M states in which the retinal Schiff base is deprotonated. Mechanistically, the latter correspond to the switch of the proton pump; it is the immediate site for coupling the transformations of the chromophore to proton transport. It includes a protein conformational change and at pH ≥ 5.8 proton release on the extracellular side. At pH ≤ 5.8 proton release is delayed until later in the cycle. Proton uptake on the cytoplasmic side appears to depend on recovery of the initial protein conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becher, B., Tokunaga, F. and Ebrey, T.G. (1978) ‘Ultraviolet and visible absorption spectra of the purple membrane protein and the photocycle intermediates’, Biochemistry. 17, 2293–2300.

    Article  PubMed  CAS  Google Scholar 

  • Birge, R.R. and Cooper, T.M. (1983) ‘Energy storage in the primary step of the photocycle of bacteriorhodopsin’, Biophys.J. 42, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Birge, R.R., Cooper, T.M., Lawrence, A.F., Masthay, M.B., Zhang, C.-F. and Zidovetzki, R. (1991) ‘Revised assignment of energy storage in the primary photochemical event in bacteriorhodopsin’, J.Am.Chem.Soc. 113, 4327–4328.

    Article  CAS  Google Scholar 

  • Braiman, M.S., Ahl, P.L. and Rothschild, K.J. (1987) ‘Millisecond Fourier-transform infrared difference spectra of bacteriorhodopsin’s M412 photoproduct’, Proc.Natl.Acad.Sci.U.S.A. 84, 5221–5225.

    Article  PubMed  CAS  Google Scholar 

  • Cao, Y., Váró, G., Chang, M., Ni, B., Needleman, R. and Lanyi, J.K. (1991) ‘Water is required for proton transfer from aspartate 96 to the bacteriorhodopsin Schiff base’, Biochemistry 30, 10972–10979.

    Article  PubMed  CAS  Google Scholar 

  • De Groot, H.J.M., Harbison, G.S., Herzfeld, J. and Griffin, R.G. (1989) ‘Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: Counterion effects on the 15N shift anisotropy’, Bio-chemistry 28, 3346–3353.

    Google Scholar 

  • Dencher, N.A., Dresselhaus, D., Zaccai, G. and Büldt, G. (1989) ‘Structural changes in bacteriorhodopsin during proton translocation revealed by neutron diffraction’, Proc.Natl.Acad.Sci.U.S.A. 86, 7876–7879

    Article  PubMed  CAS  Google Scholar 

  • Dencher, N.A. and Wilms, M. (1975) ‘Flash photometric experiments on the photochemical cycle of bacteriorhodopsin’, Biophys.Struct.Mech. 1, 259–271.

    Article  PubMed  CAS  Google Scholar 

  • Drachev, L.A., Kaulen, A.D. and Skulachev, V.P. (1984) ‘Correlation of photochemical cycle, H+ release and uptake, and electrical events in bacteriorhodopsin’, FEBS Lett. 178, 331–335.

    Article  CAS  Google Scholar 

  • Fischer, U.C. and Oesterhelt, D. (1980) ‘Changes in the protonation state of bacterio-opsin during reconstitution of bacteriorhodopsin’, Biophys.J. 31, 139–145.

    Article  PubMed  CAS  Google Scholar 

  • Fodor S.P., Ames, J.B, Gebhard, R., van der Berg, E.M., Stoeckenius, W., Lugtenburg, J. and Mathies, R.A. (1988a) ‘Chromophore structure in bacteriorhodopsin’s N intermediate: implications for the proton pumping mechanism’, Biochemistry 27, 7097–7101.

    Article  PubMed  CAS  Google Scholar 

  • Fodor, S.P., Pollard, W.T., Gebhard, R., van den Berg, E.M., Lugtenburg, J. and Mathies, R.A. (1988b) ‘Bacteriorhodopsin’s L550 intermediate contains a C14–C15 s-trans-retinal chromophore’, Proc.Natl.Acad.Sci. U.S.A. 85, 2156–2160.

    Article  CAS  Google Scholar 

  • Garty, H., Klemperer, G., Eisenbach, M. and Caplan, S.R. (1977) ‘The direction of light-induced pH changes in purple membrane suspensions. Influence of pH and temperature’, FEBS.Lett. 81, 238–242.

    Article  PubMed  CAS  Google Scholar 

  • Garty, H., Caplan, S.R. and Cahen, D. (1982) ‘Photoacoustic photocalorimetry and spectroscopy of Halobacterium halobium purple membranes’, Biophys.J. 37, 405–415.

    Article  PubMed  CAS  Google Scholar 

  • Gerwert, K. and Siebert, F. (1986) ‘Evidence for light-induced 13-cis, 14-s-cis isomerization in bacteriorhodopsin obtained by FTIR difference spectroscopy using isotopically labeled retinals’, EMBO J.5, 805–811.

    PubMed  CAS  Google Scholar 

  • Grzesiek, S. and Dencher, N.A. (1986) ‘Time-course and stoichiometry of light-induced proton release and uptake during the photocycle of bacteriorhodopsin’, FEBS Lett. 208, 337–342.

    Article  CAS  Google Scholar 

  • Heberle, J. and Dencher, N.A. (1990) ‘Bacteriorhodopsin in ice: Accele rated proton transfer from the purple membrane surface’, FEBS Lett. 277, 277–280.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E. and Downing, K.H. (1990) ‘Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy’, J.Mol.Biol. 213, 899–929.

    Article  PubMed  CAS  Google Scholar 

  • Koch, M.H.J., Dencher, N.A., Oesterhelt, D., Plöhn, H.-J., Rapp, G. and Büldt, G. (1991) ‘Time-resolved X-ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin’, EMBO J.10, 521–526.

    PubMed  CAS  Google Scholar 

  • Lanyi, J.K. (1992) ‘Proton transfer and energy coupling in the bacteriorhodopsin photocycle’, J.Bioenerg.Biomembr. (in press).

    Google Scholar 

  • Lozier, R.H., Xie, A., Hofrichter, J. and Clore, G.M. (1992) ‘Reversible steps in the bacteriorhodopsin photocycle’, Proc.Natl.Acad.Sci.U.S.A. 89, 3610–3614.

    Article  PubMed  CAS  Google Scholar 

  • Marinetti, T. and Mauzerall, D. (1983) ‘Absolute quantum yields and proof of proton and nonproton transient release and uptake in photo-excited bacteriorhodopsin’, Proc.Natl.Acad.Sci.U.S.A. 80, 178–180.

    Article  PubMed  CAS  Google Scholar 

  • Mathies, R.A., Lin, S.W., Ames, J.B. and Pollard, W.T. (1991) ‘From femtoseconds to biology: Mechanism of bacteriorhodopsin’s light-driven proton pump’, Annu.Rev.Biophys.Biophys.Chem. 20, 491–518.

    Article  PubMed  CAS  Google Scholar 

  • Nagle, J.F. and Mille, M. (1981) ‘Molecular models of proton pumps’, J.Chem.Phys. 74, 1367–1372.

    Article  CAS  Google Scholar 

  • Ormos, P. (1991) ‘Infrared spectroscopic demonstration of a conformational change in bacteriorhodopsin involved in proton pumping’, Proc.Natl.Acad.Sci.U.S.A. 88, 473–477.

    Article  PubMed  CAS  Google Scholar 

  • Ort, D.R. and Parson, W.W. (1979) ‘Enthalpy changes during the photo-chemical cycle of bacteriorhodopsin’, Biophys.J. 25, 355–364.

    Article  PubMed  CAS  Google Scholar 

  • Otto, H., Marti, T., Holz, M., Mogi, T., Stern, L.J., Engel, F., Khorana, H.G. and Heyn, M.P. (1990) ‘Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base’, Proc.Natl. Acad.Sci.U.S.A. 87, 1018–1022.

    Article  CAS  Google Scholar 

  • Rothschild, K.J. (1992) ‘FTIR difference spectroscopy of bacteriorhodop-sin: towards a molecular model’, J.Bioenerg.Biomembr. (in press).

    Google Scholar 

  • Sasaki, J., Shichida, Y., Lanyi, J.K. and Maeda, A. (1992) ‘Protein changes associated with reprotonation of the Schiff base in the photocycle of asp96-asn bacteriorhodopsin. The MN intermediate with unprotonated Schiff base but N-like protein structure’, (submitted).

    Google Scholar 

  • Schulten, K., Schulten, Z. and Tavan, P. (1984) ‘An isomerization model for the pump cycle of bacteriorhodopsin’, in Bolis, A., Helmreich, H. and Passow, H. (eds.), Information and Energy Transduction in Biological Membranes, Alan R. Liss, Inc., New York, pp. 113–131.

    Google Scholar 

  • Takeuchi, Y., Ohno, K., Yoshida, M. and Nagano, K. (1981) ‘Light-induced proton dissociation and association in bacteriorhodopsin’, Photochem. Photobiol. 33, 587–592.

    Article  CAS  Google Scholar 

  • Tittor, J., Bamberg, E. and Oesterhelt, D. (1992) ‘A unifying concept for ion translocation by retinal proteins’, J.Bioenerg.Biomembr. (in press).

    Google Scholar 

  • Váró, G. and Lanyi, J.K. (1990) ‘Protonation and deprotonation of the M, N, and 0 intermediates during the bacteriorhodopsin photocycle’, Biochemistry 29, 6858–6865.

    Article  PubMed  Google Scholar 

  • Váró, G. and Lanyi, J.K. (1991a) ‘Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle’, Biochemistry 30, 5008–5015.

    Article  PubMed  Google Scholar 

  • Váró, G. and Lanyi, J.K. (1991b) ‘Effects of the crystalline structure of purple membrane on the kinetics and energetics of the bacteriorhodopsin photocycle’, Biochemistry 30, 7165–7171.

    Article  PubMed  Google Scholar 

  • Váró, G. and Lanyi, J.K. (1991c) ‘Thermodynamics and energy coupling in the bacteriorhodopsin photocycle’, Biochemistry 30, 5016–5022.

    Article  PubMed  Google Scholar 

  • VAró, G., ZimAnyi, L., Chang, M., Ni, B., Needleman, R. and Lanyi, J.K. (1992) ‘A residue substitution near the b-ionone ring of the retinal affects the M substates of bacteriorhodopsin’, Biophys.J. 61, 820–826.

    Article  PubMed  Google Scholar 

  • ZimAnyi, L., Keszthelyi, L. and Lanyi, J.K. (1989) ‘Transient spectroscopy of bacterial rhodopsins with optical multichannel analyzer. 1. Comparison of the photocycles of bacteriorhodopsin and halorhodopsin’, Biochemistry 28, 5165–5172.

    Article  PubMed  CAS  Google Scholar 

  • ZimAnyi, L., and Lanyi, J.K. (1992) ‘Deriving the intermediate spectra and photocycle kinetics from time-resolved difference spectra of bacteriorhodopsin. The simpler case of the D96N protein’, (submitted).

    Google Scholar 

  • ZimAnyi, L., G. VAró, Chang, M., Ni, B., Needleman, R. and Lanyi, J.K. (1992a) ‘Pathways of proton release in the bacteriorhodopsin photo-cycle’, (submitted).

    Google Scholar 

  • ZimAnyi, L., Cao, Y., Chang, M., Ni, B., Needleman, R. and Lanyi, J.K. (1992b) ‘The two consecutive M substates in the photocycle of bacteriorhodopsin are affected specifically by the D85N and D96N residue replacements’, (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lanyi, J.K. (1992). From Time-Resolved Difference Spectra to Kinetics, Mechanism, and Thermodynamics in the Bacteriorhodopsin Photocycle. In: Pullman, A., Jortner, J., Pullman, B. (eds) Membrane Proteins: Structures, Interactions and Models. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2718-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2718-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5205-4

  • Online ISBN: 978-94-011-2718-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics