Skip to main content

A Minimal Model of Ion Channels: Polyamino Acids in Liposomes

  • Conference paper
Membrane Proteins: Structures, Interactions and Models

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 25))

  • 167 Accesses

Abstract

Polyamino acids have been incorporated into extruded liposomes and the proton permeability of the liposomal membrane measured by fluorescence spectroscopy. This procedure was designed to test the theoretical possibility (Furois-Corbin and Pullman, 1986;1987) that a bundle of hydrophobic a-helices could provide a low energy pathway through the lipid bilayer for ions. Liposomes with incorporated poly-Lalanine or poly-L-leucine were found to have proton permeability coefficients 5–7 times greater than control liposomes, an effect similar to that seen with alamethicin in the same peptide to lipid range. Two molecular weights of polyalanine were tested for their effect on proton permeability. It was found that long-chain polyalanine (MW 24,600) had an effect 2.7 times greater than short-chain polyalanine (MW 2000). Poly-Lhistidine did not increase proton permeability above control values. Potassium permeability was not markedly increased by any of the polyamino acids tested. An analytical thin layer chromatography measurement of lipid and a fluorescamine assay for amino acids showed that there are ~300 polyleucine, ~400 long-chain polyalanine, or ~7600 short-chain polyalanine molecules associated with each liposome. Of the associated polyamino acid, Fourier transform infrared spectroscopy indicated that a major fraction exists in an a-helical conformation. Thus, hydrophobic polyamino acids in liposomes may represent a minimal model for proton channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archer, S. J Ellena, J. F., and Cafiso, D. S. (1991) ‘Dynamics and aggregation of the peptide ion channel alamethicin; measurements using spin-labeled peptides’, Biophysical Journal 60, 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Barnard, E. A., Darlison, M. G., and Seeburg, P. (1987) ‘Molecular biology of the GABAA receptor: the receptor/channel superfamily’, Trends in Neuroscience 10, 502–509.

    Article  CAS  Google Scholar 

  • Biegel, C. M. and Gould, J. M. (1981) ‘Kinetics of hydrogen ion diffusion across phospholipid vesicle membranes’, Biochemistry 20, 3474–3479.

    Article  PubMed  CAS  Google Scholar 

  • Braiman, M. S. and Rothschild, K. J. (1988) ‘Fourier transform infrared techniques for probing membrane structure’, Biophysical Journal 17, 541–570.

    CAS  Google Scholar 

  • Brown, J. W. and Huestis, W. H. (1992) ‘Interactions of a hydrophobic peptide derivative with unilamellar phospholipid vesicles’, Biophysical Journal 61, A83.

    Google Scholar 

  • Byler, D. M., Brouillette, J. N., and Susi, H. (1986) ‘Quantitative studies of protein structure by FTIR spectral deconvolution and curve fitting’, Spectroscopy 3, 29–32.

    Google Scholar 

  • Byler, D. M. and Susi, H. (1985) ‘Protein structure by FTIR self deconvolution’, Proceedings of SPIE 553, 289–290.

    Article  Google Scholar 

  • Byler, D. M. and Susi, H. (1986) ‘Examination of the secondary structure of proteins by deconvolved FTIR spectra’, Biopolymers 25, 469–487.

    Article  PubMed  CAS  Google Scholar 

  • Byler, D. M. and Susi, H. (1988) ‘Application of computerized infrared and Raman spectroscopy to conformation studies of casein and other food proteins’, Journal of Industrialized Microbiology 3, 73–88.

    Article  CAS  Google Scholar 

  • Clement, N. R. and Gould, J. M. (1981) ‘Pyranine (8-hydroxy-1,3,6pyrenetrisulfonate) as a probe of internal aqueous ion concentration in phospholipid vesicles’, Biochemistry 20, 1534–1538.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, E., Couturier, S., and Ballivet, M. (1991) ‘Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor’, Nature 350, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Deamer, D. W. (1987) ‘Proton permeation of lipid bilayers’, Journal of Bioenergetics and Biomembranes 19, 457–479.

    PubMed  CAS  Google Scholar 

  • Deamer, D. W. and Nichols, J. W. (1989) ‘Proton flux mechanisms in model and biological membranes’, Journal of Membrane Biology 107, 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, M., Hall, J. E., and Mead, C. A. (1973) ‘The nature of the voltage dependent conductance induced by alamethicin in black lipid membranes’, Journal of Membrane Biology 14, 143–176.

    Article  PubMed  CAS  Google Scholar 

  • Epand, R. M., Surewicz, W. K., Hughes, D. W., Mantsch, H., Segrest, J. P., Allen, T. M., and Anantharamaiah, G. M. (1989) ‘Properties of lipid complexes with amphipathic helix-forming peptides’, Journal of Biological Chemistry 264, 4628–4635.

    PubMed  CAS  Google Scholar 

  • Fasman, G. D. (1962) ‘The relative stabilities of the a-helix in synthetic polypeptides’, in M. Stahmann (ed.), Polyamino Acids, Polypeptides, and Proteins, Univ. of WI Press, Madison, WI, pp. 221–228.

    Google Scholar 

  • Furois-Corbin, S. and Pullman, A. (1986) ‘Theoretical study of the packing of a-helices of poly-L-alanine into transmembrane bundles. Possible significance for ion transfer’, Biochimica et Biophysica Acta 860, 165–177.

    Article  CAS  Google Scholar 

  • Furois-Corbin, S. and Pullman, A. (1987) ‘Theoretical study of potential ion channels formed by a bundle of cc-helices: effect of the presence of polar residues along the channel inner-wall’, Journal of Biomolecular Structure and Dynamics 4, 589–597.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. E., Vodyanoy, I., Balasubramanian, T. M., and Marshall, G. R. (1984) ‘Alamethicin, a rich model for channel behavior’, Biophysical Journal 45, 233–247.

    Article  PubMed  CAS  Google Scholar 

  • Heitz, F., Spach, G., Seta, P., and Gavach, C. (1982) ‘Ion conducting pores induced by oligo-L-alanine’, Biochemical and Biophysical Research Communications 107, 481–484.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, R. E. and White, S. H. (1989) ‘The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices’, Biochemistry 28, 3421–3437.

    Article  PubMed  CAS  Google Scholar 

  • Kano, K. and Fendler, J. H. (1978) ‘Pyranine as a sensitive pH probe for liposome interiors and surfaces’, Biochimica et Biophysica Acta 509, 289–299.

    Article  PubMed  CAS  Google Scholar 

  • Kosower, E. M. (1987) ‘ A structural and dynamic model for the nicotinic acetylcholine receptor’, European Journal of Biochemistry 168, 431–449.

    Article  Google Scholar 

  • Lear, J. D., Wasserman, Z. R., and DeGrado, W. F. (1988) ‘Synthetic amphiphilic peptide models for protein ion channels’, Science 240, 1177–1182.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, D. G., Elias, S. R., and Hautman, J. M. (1978) ‘Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin’, Biochimica et Biophysica Acta 512, 436–451.

    Article  PubMed  CAS  Google Scholar 

  • Mimms, L. T., Zampighi, G., Nozaki, Y., Tanford, C., and Reynolds, A. (1981) ‘Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside’, Biochemistry 20, 833–840.

    Article  PubMed  CAS  Google Scholar 

  • Myers, V. B. and Haydon, D. A. (1972) ‘Ion transfer across lipid membranes in the presence of gramicidin A’, Biochimica et Biophysica Acta 274, 313–322.

    Article  PubMed  CAS  Google Scholar 

  • Nagle, J. F. and Tristram-Nagle, S. (1983) ‘Hydrogen-bonded chain mechanisms for proton conduction and proton pumping’, Journal of Membrane Biology 74, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, J. W. and Deamer, D. W. (1980) ‘Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique’, Proceedings of the National Academy of Sciences, USA 77, 2038–2042.

    Article  CAS  Google Scholar 

  • Olsen, R. W. and Tobin, A. J. (1990) ‘Molecular biology of GABAA receptors’, FASEB Journal 4, 1469–1480.

    PubMed  CAS  Google Scholar 

  • Parente, R. A., Nadasdi, L., Subbarao, N. K., and Szoka, F. C. Jr. (1990) ‘Association of a pH sensitive peptide with membrane vesicles: role of amino acid sequence’, Biochemistry 29, 8713–8719.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, W. R. and Cafiso, D. S. (1986) ‘An electrical and structural characterization of H+/OH-currents in phospholipid vesicles’, Biochemistry 25, 2270–2276.

    Article  PubMed  CAS  Google Scholar 

  • Portlock, S. H., Clague, M. J., and Cherry, R. J. (1990) ‘Leakage of internal markers from erythrocytes and lipid vesicles induced by melittin, gramicidin S and alamethicin: a comparitive study’, Biochimica et Biophysica Acta 1030,1–10.

    Article  PubMed  CAS  Google Scholar 

  • Pullman, A. (1988) ‘Theoretical studies on the formation and properties of bundles of a-helices and their aptitude to form ion channels’, Progress in Clinical and Biological Research 273, 113–120.

    PubMed  CAS  Google Scholar 

  • Segrest, J. P., DeLoof, H., Dohlman, J. G., Brouillette, C. G., and Anatharamaiah, G. M. (1990) ‘Amphipathic helix motif: classes and properties’, Proteins: Structure Function and Genetics 8, 103–117.

    Article  CAS  Google Scholar 

  • Susi, H. and Byler, D. M. (1983) ‘Protein structure by FTIR spectroscopy second derivative spectra’, Biochemical and Biophysical Research Communications 115, 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, B. A. (1988) ‘Membrane protein folding: motifs and predictions’, Progress in Clinical and Biological Research 273, 133–138.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Oliver, A.E., Deamer, D.W. (1992). A Minimal Model of Ion Channels: Polyamino Acids in Liposomes. In: Pullman, A., Jortner, J., Pullman, B. (eds) Membrane Proteins: Structures, Interactions and Models. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2718-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2718-9_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5205-4

  • Online ISBN: 978-94-011-2718-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics