Skip to main content

The Nicotinic Acetylcholine Receptor, A Model of Ligand-Gated Ion Channels

Investigation of its functional organization by protein chemistry and site-directed mutagenesis

  • Conference paper
Membrane Proteins: Structures, Interactions and Models

Abstract

Upon rapid release from the nerve terminal at a 0.1-1mM concentration, the neurotransmitter acetylcholine (ACh) diffuses through the synaptic cleft separating motoneuron and skeletal muscle, and causes the all-or-none opening of ionic channels from the post-synaptic membrane. Ion flux through these channels selective for sodium, potassium and other small cations (Adams et al. 1980), leads to the depolarization of the post-synaptic cell, and then to muscle contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson, S.N., Li, Y., Culver, P., Taylor, P. (1989). An analog of lophotoxin reacts covalently with Tyr-190 in the a–subunit of the nicotinic acetylcholine recptor. J. Biol. Chem. 264, 12666–12672.

    PubMed  CAS  Google Scholar 

  • Adams, D.J., Dwyer, T.M., Hille, B. (1980). The permeability of endplate channels to monovalent and divalent cations. J. Gen. Physiol., 75, 493–510.

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque E.X., Tsai, M.C., Aronstam, R.S., Eldefrawi, A.T., Eldefrawi, M.E. (1980). Sites of action of phencyclidine. II. Interaction with the ionic channel of the nicotinic receptor. Mol. Pharmacol. 18, 167–178.

    Google Scholar 

  • Albuquerque, E.X., Alkondon, M., Lima-Landman, M.T., Deshpande, S., Ramoa, A.S. (1988). Molecular targets of noncompetitive blockers at the central and peripheral nicotinic and glutamatergic receptors. In Neuromuscular Junction, Ed. L.S. Sellin, R. Libelius, S. Thesleff, 13, 273–300.

    Google Scholar 

  • Bertrand, D., Devillers-Thiéry, A., Revah, F., Galzi, J.L., Hussy, N., Mulle, C., Bertrand, S., Ballivet, M., Changeux, J.P. (1992). Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc. Natl. Acad. Sci; USA 89, 1261–1265.

    Article  PubMed  CAS  Google Scholar 

  • Blanton, M.P., Cohen, J.B. (1992). Mapping the lipid-exposed regions in theTorpedocalifornica nicotinic acetylcholine receptor. Biochemistry, 31, 3738–3750.

    Article  PubMed  CAS  Google Scholar 

  • Blount, P., Merlie, J.P. (1989). Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic receptor. Neuron, 3, 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Boulter, J., O’Shea-Greenfield, A., Duvoisin, R.M., Connolly, J.G., Wada, E., Jensen, A., Gardner, P.D., Ballivet, M., Deneris, E.S., McKinnon, D., Heinemann, S., Patricck, J. (1990). a3, a5 and 134: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J. Biol. Chem. 265, 4472–4482.

    PubMed  CAS  Google Scholar 

  • Boyd, N.D., Cohen, J.B. (1980). Kinetics of binding of acetylcholine and carbamylcholine to Torpedo postsynaptic membranes: slow conformational transitions of the cholinergic receptor. Biochemistry 19, 5344–5358.

    Article  PubMed  CAS  Google Scholar 

  • Changeux, J.P., Devillers-Thiéry, A., Chemouilli, P. (1984). Acetylcholine receptor: an allosteric protein. Science 225, 1335–1343.

    Article  Google Scholar 

  • Changeux, J.P., Pinset, C., Ribera, A. (1986). Effects of chlorpromazine and phencyclidine on mouse C2 acetylcholine receptor kinetics. J. Physiol. (Lond.) 378, 497–513.

    CAS  Google Scholar 

  • Changeux, J.P., Giraudat, J., Dennis, M. (1987). The nicotinic acetylcholine receptor: Molecular architecture of a ligand-regulated ion channel. Trends in Pharmacol. Sci. 8, 459–465.

    CAS  Google Scholar 

  • Changeux, J.P. (1990). Functional architecture and dynamics of the nicotinic acetylcholine receptor: An allosteric ligand-gated ion channel. Fidia research Foundation Neuroscience Award Lecture, volume 4, Changeux, Llinas, Purves and Bloom, eds. Raven Press Ltd, 21–168.

    Google Scholar 

  • Changeux, J.P., Devillers-Thiéry, A., Galzi, J.L., Bertrand, D. (1992) New mutants to explore nicotinic receptor functions. Trends Pharmacol. Sci. (in press).

    Google Scholar 

  • Charnet, P., Labarca, C., Leonard, R.J., Vogelaar, N.J., Czyzyk, L., Gouin, A., Davidson, N., Lester, H.A. (1990). An open channel blocker interacts with adjacent turns of a¡ªhelices in the nicotinic acetylcholine receptor. Neuron, 2, 87–95.

    Article  Google Scholar 

  • Chatrenet, B., Tremeau, O., Bonteens, F., Goeldner, M., Hirth, C., Ménez, A. (1990). Topographical studies of toxin-acetylcholine receptor complexes using photoactivatable toxin derivatives. Proc. Natl. Acad. Sci. USA. 87, 3378–3382.

    Article  PubMed  CAS  Google Scholar 

  • Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davis, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M., Poljak, R.J. (1989). Conformations of immunoglobulin hypervariable regions, Nature, 342, 877–883.

    Article  PubMed  CAS  Google Scholar 

  • Claudio, T., Ballivet, M., Patrick, J., Heinemann, S. (1983). Nucleotide and deduced amino acid sequences ofTorpedoCalifornica acetylcholine receptor gamma-subunit. Proc. Natl. Acad. Sci. USA. 80, 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Clineschmidt, B.V., Williams, M., Witoslawski, J.J., Bunting, P.R., Risley, E.A., Totaro, J.A. (1982). Restoration of shock-suppressed behaviour by treatment with MK 801, a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev. Res. 2, 147–163.

    Article  CAS  Google Scholar 

  • Cockroft, V.B., Osguthorpe, D.J., Barnard, E.A., Friday, A.E., Lunt, G.G. (1992). Ligand-gated ion channels: Homology and diversity. Mol. Neurobiol., 4, 129–169.

    Article  Google Scholar 

  • Cohen, B.N., Labarca, C., Czyzyk, L., Davidson, N. Lester, H.A. (1992). Tris/Na permeability rations of nicotinic acetylcholine receptors are reduced by mutations near the intracellular end of the MII region. J. Gen. Physiol. 99, 545–572.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J.B., Sharp, S.D., Liu, W.S. (1991). Structure of tha agonist-binding site of the nicotinic acetylcholine receptor. J. Biol. Chem. 266, 23354–23364.

    PubMed  CAS  Google Scholar 

  • Cohen, J.B., Blanton, M.P., Chiara, D.C., Sharp, S.D., White, B.H. (1992). Structural organization of functional domains of the nicotinic acetylcholine receptor. J. Cell Biochem.: Keystone Symposia, T 003, P. 217.

    Google Scholar 

  • Connolly, J., Boulter, J., Heinemann, S. (1992). a4–2 ¡32 and other nicotinic acetylcholine receptor subtypes as targets of psychoactive and addictive drugs. Br. J. Pharmacol. 105, 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Couturier, S., Bertrand, D., Matter, J.M., Hernandez, M.C., Bertrand, S., Millar, N., Valera, S., Barkas, T., Ballivet, M. (1990). A neuronal nicotinic acetylcholine receptor subunit (a7) is developmentally regulated and forms homooligomeric channels blocked by a¡ªbungarotoxin. Neuron, 5, 845–856.

    Article  Google Scholar 

  • Cox, R.N., Kaldany, R.R.J., DiPaola, M., Karlin, A. (1985). Time-resolved photolabeling by quinacrine azide of a noncompetitive inhibitor site of the nicotinic acetylcholine recptor in a transient, agonist induced state. J. Biol. Chem. 260, 7186–7193.

    PubMed  CAS  Google Scholar 

  • Culver, P., Fenical, W., Taylor, P. (1984). Lophotoxin irreversibly inactivates the nicotinic acetylcholine receptor by preferential association at one of the two primary agonist sites. J. Biol. Chem. 259,3763–3770.

    PubMed  CAS  Google Scholar 

  • Damle, V.N., McLaughlin, M., Karlin, A. (1978). Bromoacetylcholine as an affinity label of the acetylcholine receptor from Torpedo californica. Boichem. Biophys. Res. Comm. 84, 845–851.

    CAS  Google Scholar 

  • Delegeane, A.M., McNamee, M.G. (1980). Independent activation of the acetylcholine receptor from Torpedo californica at two sites. Biochemistry, 19, 890–895.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, M., Giraudat, J., Kotzyba-Hibert, F., Goeldner, M., Hirth, C., Chang, J.Y., Lazure, C., Chretien, M., Changeux, J.P. (1988). Amino acids of theTorpedomarmorata acetylcholine receptor a-subunit labeled by a photoaffinity ligand for. the acetylcholine binding site. Biochemistry, 27, 2346–2357.

    Article  PubMed  CAS  Google Scholar 

  • Devillers-Thiéry, A., Giraudat, J., Bentaboulet, M., Changeux, J.P. (1983). Complete mRNA coding sequence of the acetylcholine binding alpha subunit ofTorpedoMannorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. USA. 80, 2067–2071.

    Article  PubMed  Google Scholar 

  • Dhaenens, M., Lacombe, L., Lehn, J.M., Vigneron, J.P. (1984). Binding of acetylcholine and other molecular cations by a macrocyclic receptor molecule of speleand type. J. Chem. Soc. Chem. Comm.16, 1097–1099.

    Article  Google Scholar 

  • Di Paola, M., Kao, P.N., Karlin, A. (1990). Mapping tha alpha subunit site photolabeled by the noncompetitive inhibitor [3H] quinacrine azide in the active state of the nicotinic acetylcholine receptor. J. Biol. Chem. 265, 11017–11029.

    Google Scholar 

  • Dougherty, D.A., Stauffer, D.A. (1990). Acetylcholine binding by a synthetic receptor: Implications for biological recognition. Science, 250, 1558–1560.

    Article  PubMed  CAS  Google Scholar 

  • Dowding, A.J., Hall, Z.W. (1987). Monoclonal antibodies specific for each of the two toxin-binding sites of torpedo acetylcholine receptor. Biochemistry, 26, 6372–6381.

    Article  PubMed  CAS  Google Scholar 

  • Eldefrawi, A.T., Eldefrawi, M.E., Albuquerque, E.X. Oliviera, A.C., Mansour, N. et al. (1977). Perhydrohistrionicotoxin: a potential ligand for the ion conductance modulator of the acetylcholine receptor. Proc. Natl. Acad. Sci. USA 74, 2172–2176.

    Article  PubMed  CAS  Google Scholar 

  • Fong, T.M. and McNamee, M.G. (1987). Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry, 26, 3871–3880.

    Article  PubMed  CAS  Google Scholar 

  • Foster, A.C., Fagg, G.E. (1987). Taking apart NMDA receptors. Nature, 329, 395–396.

    Article  PubMed  CAS  Google Scholar 

  • Furois-Corbin, S., Pullman, A. (1989). A possible model for the inner wall of the acetylcholine receptor channel. Biochem. Biophys. Acta. 984, 339–350.

    CAS  Google Scholar 

  • Galzi, J.L., Revah, F., Black, D., Goeldner, M., Hirth, C., Changeux, J.P. (1990). Identification of a novel amino acid a-Tyr 93 within the active site of the acetylcholine receptor by photoaffinity labeling: additional evidence for a three-loop model of the acetylcholine binding site. J. Biol. Chem. 265, 10430–10437.

    Google Scholar 

  • Galzi, J.L., Revah, F., Bouet, F., Ménez, A., Goeldner, M., Hirth, C., Changeux, J.P. (1991b). Allosteric transitions of the acetylcholine receptor probed at the amino acid level with a photolabile cholinergic ligand. Proc. Natl. Acad. Sci. USA. 88, 5051–5055.

    Article  PubMed  CAS  Google Scholar 

  • Galzi, J.L., Revah, F., Bessis, A., Changeux, J.P. (1991a). Functional architecture of the nicotinic acetylcholine receptor From electric organ to brain. Ann. Rev. Pharmacol. Toxicol. 31, 37–72.

    Article  CAS  Google Scholar 

  • Galzi, J.L., Bertrand, D., Devillers-Thiéry, A., Revah, F., Bertrand, S., Changeux, J.P. (1991c). Functional significance of aromatic amino acids from three peptide loops of the a7 neuronal nicotinic receptor site investigated by site-directed mutagenesis. FEBS Lett. 294, 198–202.

    Article  Google Scholar 

  • Giraudat, J., Montecucco, C., Bisson, R., Changeux, J.P. (1985). Transmembrane topology of acetylcholine receptor subunits probed with photoreactive phospholipids. Biochemistry, 24, 3121–3127.

    Article  PubMed  CAS  Google Scholar 

  • Giraudat, J., Dennis, M., Heidmann, T., Chang, J.Y., Changeux, J.P. (1986). Structure of the high affinity site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the delta subunit is labeled by [3H]-chlorpromazine. Proc. Natl. Acad. Sci.USA. 83, 2719–2723.

    Article  PubMed  CAS  Google Scholar 

  • Giraudat, J., Dennis, M., Heidmann, T., Haumont, P.Y., Lederer, F., Changeux, J.P. (1987). Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor. chlorpromazine labels homologous residues in the b and d chains. Biochemistry, 26, 2410–2418.

    Article  PubMed  CAS  Google Scholar 

  • Giraudat, J., Galzi, J.L., Revah, F., Changeux, J.P., Haumont, P.Y., Lederer, F. (1989). The noncompetitive blocker chlorpromazine labels segment MII but not segment MI on the nicotinic acetylcholine receptor a-subunit. FEBS Lett. 253, 190–198.

    Article  PubMed  CAS  Google Scholar 

  • Goeldner, M.P., Hirth, C.G. 1980. Specific photoaffinity labeling induced by energy transfer: application to irreversible inhibition of acetylcholinesterase. Proc. Natl. Acad. Sci. 77, 6439–6442.

    Article  PubMed  CAS  Google Scholar 

  • Goeldner, M.P., Hirth, C.G., Kieffer, B., Ourisson, G. 1982. Photosuicide inhibition-a step towards specific photoaffinity labeling. Trends Biochem. Sci. 7, 310–312.

    CAS  Google Scholar 

  • Gregor, P., Mano, I., Maoz, I., McKeown, M., Teichberg,V. (1989). Molecular structure of the chick cerebellar kainate-binding subunit of a putative glutamate receptor. Nature, 342, 689–692.

    Article  PubMed  CAS  Google Scholar 

  • Grünhagen, H.H., Changeux, J.P. 1976. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. Quinacrine: a fluorescent probe for the conformational transitions of the cholinergie receptor protein in its membrane bound state. J. Mol. Biol. 106, 497–516.

    Article  PubMed  Google Scholar 

  • Hall, Z.W., Roisin, M.P., Gu, Y., Gorin, P.D. (1983) A developmental change in the immunological properties of acetylcholine receptors at the rat neuromuscular junction. Cold Spring Harbor Symp Quant Biol 48, 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Heginbotham, L., McKinnon, R. (1992). The aromatic binding site for tetraethylammonium ion in potassium channels. Neuron, 8, 483–491.

    Article  PubMed  CAS  Google Scholar 

  • Heidmann, T., Oswald, R.E., Changeux, J.P. (1983). Multiple sites of action for noncompetitive blockers on acetylcholine receptor rich membrane fragments fromTorpedoMarmorata. Biochemistry, 22, 3112–3127.

    Article  PubMed  CAS  Google Scholar 

  • Heidmann, T., Changeux, J.P. 1979. Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor fromTorpedoMarmorata. Eur. J. Biochem. 94, 281–296.

    Article  PubMed  CAS  Google Scholar 

  • Herz, J.M., Johnson, D.A., Taylor, P. (1989). Distance between the agonist and noncompetitive inhibitor sites on the nicotinic acetylcholine receptor. J. Biol. Chem. 264, 12439–124448.

    Google Scholar 

  • Hibert, M., Trump-Kallmeyer, S.T., Bruinvels, A., Hoflak, J. (1991). Three-dimensional models of neurotransmitter G-protein coupled receptors. Mol. Pharmacol. 40, 8–15.

    CAS  Google Scholar 

  • Hollmann, M., O’Shea-Greefield, A., Rogers, S., Heinemann, S. (1989). Cloning by functional expression of a member of the glutamate receptor family. Nature, 342, 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Hucho, F., Oberthür, W., Lottspeich, F. (1986). The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M2 of the receptor subunits. FEBS Lett. 205, 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Imoto, K., Busch, C., Sackmann, B., Mishina„M., Konno, T., et al. (1988). Rings of negatively charged amino acids determine the acetylchoine receptor channel conductance. Nature, 335, 645–648.

    Article  PubMed  CAS  Google Scholar 

  • Imoto, K., Methfessel, C., Sakmann, B., Mishina, M., Mori, Y., Konno, T., Kurosaki, M., Bujo, H., Fujita, Y., Numa, S. (1986). Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel. Nature, 324, 670–674.

    Article  PubMed  CAS  Google Scholar 

  • Imoto, K., Konno, T., Nakai, J., Wang, F., Mishina, M., Numa, S. (1991). A ring of uncharged polar amino acids as a component of channel constriction in the nicotinic acetylcholine receptor. FEBS Lett. 289,193–200.

    Article  PubMed  CAS  Google Scholar 

  • Katz, B., Thesleff, S. (1957). A study of the desensitization produced by acetylcholine at the motor endplate. J. Physiol. 138, 63–80.

    PubMed  CAS  Google Scholar 

  • Kao, P.N., Dwork, A.J., Kaldany, R.R.J., Silver, M.L., Widemann, J., Stein, J., Karlin, A. (1984). Identification of the a-subunit half-cystine specifically labeled by an affinity reagent for acetylcholine receptor binding site. J. Biol. Chem. 259, 8085–8088.

    Google Scholar 

  • Karlin, A. (1991). Explorations of the nicotinic acetylcholine receptor. The Harvey Lectures, Series 85 (Wiley-Liss Eds) 71–107.

    CAS  Google Scholar 

  • Klarsfeld, A., Devillers-Thiéry, A., Giraudat, J., Changeux, J.P. (1984). A single gene codes for the nicotinic acetylcholine receptor alpha-subunit inTorpedomarmorata: Structural and developmental implications. Embo J. 3, 35–41.

    PubMed  CAS  Google Scholar 

  • Kloog, Y., Kalir, A., Buchman, O., Sokolovsky, M. (1980). Specific binding of phencyclidines to membrane preparation. Possible interaction with the cholinergie ionophores. FEBS Lett. 109, 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Konno, T., Bush, C., Von Kitzing, E., Imoto, K., Wang, F., Nakai, J., Mishina, M., Numa, S., Sakmann, B. (1991). Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor. Proc. R. Soc. Lond. B. 244, 69–79.

    Article  CAS  Google Scholar 

  • Kotzyba-Hibert, F., Jaganathen, J., Langenbuch-Cachat, J., Goeldner, M. hirth, C.G. et al. (1989). Topographical analysis of the Torpedo marmorata acetylcholine receptor by energy transfer photoaffinity labeling using aryldiazonium derivatives. inPhotochemical probes in Biochemistry. Ed. Nielsen, P. NATO ASI series C, Vol 272, 85–105.

    CAS  Google Scholar 

  • Krodel, E., Beckman, R.A., Cohen, J.B. (1979). Identification of a local anesthetic binding site in nicotinic post-synaptic membranes isolated from Torpedo marmorata electri tissue. Mol. Pharmacol. 15, 294–312.

    CAS  Google Scholar 

  • Kubalek, E., Ralston, S., Lindstrom, J., Unwin, P.N.T. (1987). Location of subunits within the acetylcholine receptor by electron image analysis of tubular cristals fromTorpedoMarmorata. J. Cell Biol. 105, 9–18.

    Article  PubMed  CAS  Google Scholar 

  • Kuhse, J., Schmieden, V., Betz, H. (1990). A single amino acid exchange alters the pharmacology of neonatal rat glycine receptor subunit. Neuron, 5, 867–873.

    Article  PubMed  CAS  Google Scholar 

  • Langenbuch-Cachat, J., Bon, C., Goeldner, M., Hirth, C., Changeux, J.P. (1988). Photoaffinity labeling by aryldiazonium derivatives ofTorpedomarmorata acetylcholine receptor. Biochemistry, 27, 2337–2345.

    Article  PubMed  CAS  Google Scholar 

  • Lehn, J.M. (1985). Supramolecular chemistry: receptors, catalysts and carriers. Science, 227, 849–856.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, R.J., Labarca, C.G., Charnet, P., Davidson, N., Lester, H.A. (1988). Evidence that MII membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science, 242, 1578–1581.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Schuchard, M., Palma, A., Pradier, L., McNamee, M.G. (1990). Functional role of the Cys 451 thiol group in the MIV helix of the ‘y¡ªsubunit of Torpedo californica acetylcholine receptor. Biochemistry, 29, 5428–5436.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Lee, Y.H., Pappone, P., Palma, A., McNamee, M.G. (1992). Site-specific mutations of nicotinic acetylcholine receptor at the lipid-protein interface dramatically alter ion channel gating. Biophys. J. 62, 61–63.

    Article  PubMed  CAS  Google Scholar 

  • Lo, D.C., Pinkham, J.L., Stevens, C.F. (1991). Role of a key cysteine residue in the gating of the acetylcholine receptor. Neuron, 6, 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Maricq, A.V., Peterson, A.S., Brake, A.J., Myers, R.M., Julius, D. (1991). Primary structure and functional expression of the 5HT-3 receptor, a serotonin-gated channel. Science, 254, 432–437

    Article  PubMed  CAS  Google Scholar 

  • Mihovilovic, M., Richman, D.P. (1984). Modification of alpha-bungarotoxin and cholinergie ligand binding properties of Torpedo receptor by a monoclonal anti-acetylcholine receptor antibody. J. Biol. Chem. 259, 15051–59.

    PubMed  CAS  Google Scholar 

  • Middleton, R.E., Cohen, J.B. (1991). Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor. Nicotine as an agonist photoaffinity label. Biochemistry 30, 6987–6997.

    Article  PubMed  CAS  Google Scholar 

  • Mishina, M., Tohimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurosaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., Numa, S. (1985). Location of functional regions of acetylcholine receptor alpha-subunit by site-directed mutagenesis. Nature, 313, 364–369.

    Article  PubMed  Google Scholar 

  • Monod, J., Wyman, J., Changeux, J.P. (1965). On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118.

    Article  PubMed  CAS  Google Scholar 

  • Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, N., Shneider, N.A., Axel, R. (1990). A family of glutamate receptor genes: Evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron, 5, 569–581.

    Article  PubMed  CAS  Google Scholar 

  • Neher, E., Steinbach, J.H. (1978). Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol. 277, 153–176.

    PubMed  CAS  Google Scholar 

  • Neubig, R.R., Cohen, J.B. (1980). Permeability control by cholinergic receptors in Torpedo post-synaptic membranes: Agonist dose response relations measured at second and millsecond times. Biochemistry, 19, 2770–2779.

    Article  PubMed  CAS  Google Scholar 

  • Neubig, R.R., Cohen, J.B. (1982). Conformations of Torpedo acetylcholine receptor associated with ion transport and desensitization. Biochemistry, 21, 3460–3467.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Tashima, H., Inayama, S., Miyata, T., Numa, S. (1983). Primary structures of beta and delta-subunit precursors oftorpedocalifornica acetylcholine receptor deduced from cDNA sequences. Nature, 301, 251–255.

    Article  PubMed  CAS  Google Scholar 

  • Oberthür, W., Muhn, P., Baumann, H., Lottspeich, F., Wittman-Liebold, B., Hucho, F. (1986). The reeaction site of a noncompetitive antagonist in the delta-subunit of the nicotinic acetylcholine receptor. EMBO J. 5, 1815–1819.

    PubMed  Google Scholar 

  • Ochoa, E.L.M., Li, L., McNamee, M.G. (1990). Desensitization of central cholinergic mechanisms and neuroadaptation to nicotine. Mol. Neurobiol. 4, 251–287.

    Article  CAS  Google Scholar 

  • Pardo, L., Ballesteros, J.A., Osman, R., Weinstein, H. (1992). On the use of the transmermbrane domain of bacteriorhodopsin as a template for modelling the three dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors. Proc. Natl. Acad. Sci. USA 89, 4009–4012.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, S.E., Cohen, J.B. (1990). [311J-meproadifen mustard reacts with glu-262 of the nicotinic acetylcholine receptor a¡ªsubunit. Biophys. J. 57, 126a.

    Google Scholar 

  • Pedersen, S.E., Cohen, J.B. (1990b). d-tubocurarine binding sites are located at the alpha-ganuna and alpha-delta subunit interfaces of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA. 87, 2785–2789.

    Article  PubMed  CAS  Google Scholar 

  • Popot, J.L., Changeux, J.P. (1984). Nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein. Physiol. Rev. 64, 1162–1239.

    CAS  Google Scholar 

  • Pritchett, D.B., Seeburg, P.H. (1991). Gamma-aminobutyric acid type A receptor point mutation increases the affinity of compounds for the benzodiazepine site. Proc. Natl. Acad. Sci. USA. 88, 1421–1425.

    Article  Google Scholar 

  • Pullman, B., Courri¨¨re, P. (1973). Complementary molecular orbital investigations on the conformation of choline derivatives. Theoret. Chico. Acta (Berl.) 31, 19–37.

    Article  CAS  Google Scholar 

  • Ramoa, A.S., Alkondon, M., Aracava, Y., Irons, J., Lunt G.G. et al. (1990). The anticonvulsant MK-801 interacts with the peripheral and central nicotinic acetylcholine receptor ion channels. J. Pharmacol. Exp. Ther. 254, 71–82.

    PubMed  CAS  Google Scholar 

  • Rang, H.P., Ritter, J.M. (1969). The relationship between desensitization and the metaphilic effect at cholinergic receptors. Mol. Pharmacol. 6, 383–390.

    Google Scholar 

  • Revah, F., Galzi, J.L., Giraudat, J., Haumont, P.Y., Lederer, F., Changeux, J.P. (1990). The noncompetitive blocker [3H]-chlorpromazine labels three amino acids of the acetylcholine receptor gamma -subunit: Implications for the a-helical organization of the M2 segments and the structure of the ion channel. Proc. Natl. Acad. Sci. USA 87, 4675–4679.

    Article  PubMed  CAS  Google Scholar 

  • Revah, F., Bertrand, D., Galzi, J.L., Devillers-Thiéry, A., Mulle, C., Jlussy, N., Bertrand, S., Ballivet, M., Changeux, J.P. (1991). Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature sous presse.

    Google Scholar 

  • Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurosaki, M., Fukuda, K., Numa, S. (1985). Role of acetylcholine receptor subunits in gating of the channel. Nature, 318, 538–543.

    Article  PubMed  CAS  Google Scholar 

  • Satow, Y., Cohen, G.H., Padlan, E., Davies, D. (1986). Phosphocholine binding immunoglobulin Fab McPC603 an X-ray diffraction study at 2.7 A. J. Mol. Biol. 190, 593–604.

    Article  PubMed  CAS  Google Scholar 

  • Scaiano, J.C., Kim-Thuan, N. (1983). Diazonium salts in photochemistry III: Attempts to characterize aryl cations. J. Photochem. 23, 269–276.

    Article  CAS  Google Scholar 

  • Sheppod, T.J., Petti, M.A., Dougherty, A.D. (1986). Tight, oriented binding of an aliphatic guest by a new class of water-soluble molecules with hydrophobic binding sites. J. Amer. Cem. Soc. 108, 6085–87.

    Article  Google Scholar 

  • Schneider, H.J., Göttes, D., Schneider, U. (1986). A macrobicyclic polyphenoxide as receptor analogue for choline and related ammonium compounds. Angew. Chem. Int. Ed. Engl. 25, 647–649.

    Article  Google Scholar 

  • Tobimatsu, T., Fujita, Y., Fukuda, K., Tanaka, K., Mori, Y., Konno, T., Mishina, M., Numa, S. (1987). Effects of substitution of putative transmembrane segments on nicotinic acetylcholine receptor function. FEBS Lett. 222, 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Tomaselli, G.F., McLaughlin, J.T., Jurman, M., Hawrot, E., Yellen, G. (1991). Site-directed mutagenesis alters agonist sensitivity of the nicotinic acetylcholine receptor. Biophys. J., 59, 33a.

    Google Scholar 

  • ToyoshimaC.Unwin, P.N.T. (1990). Three-dimensional structure of the acetylcholine receptor by cryoelctron microscopy and helical image reconstruction. J. Cell Biol. 111, 2623–2635.

    Article  PubMed  CAS  Google Scholar 

  • Unwin, P.N.T., Toyoshima, C., Kubalek, E. (1988). Arrangenment of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J. Cell Biol. 107, 1123–1138.

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg, R.J., French, C.R., Barry, P.H., Shine, J., Schofield, P.R. (1992). Three domains of the a-subunit of the glycine receptor forin the strychnine dinbing site. J. Cell Biochem.: Keystone symposia on molecular and cellular biology, T 213, p. 229.

    Google Scholar 

  • Villaroel,A., Herlitze, S., Koenen, M. Sakmann, B. (1990). Location of a threonine residue in the a-subunit M2 transmembrane segment that determines the ion flow through the acetylcholine receptor channel. Proc. R. Soc. Lond. B. 243, 69–74.

    Google Scholar 

  • Watters, D., Maelicke, A. (1983). Organization of ligand binding sites at the acetylcholine receptor: a study with monoclonal antibodies. Biochemistry, 22, 1811–1819.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M., Changeux, J.P. (1974). Effects of the cholinergie agonists and antagonists on the binding of the vitiated a-neurotoxin. Mol. Pharmacol., 10, 13–34.

    Google Scholar 

  • Weiland, G., Taylor, P. (1979). Ligand specificity of state transitions in the cholinergic receptor: Behavior of agonists and antagonists. Mol. Pharmacol. 15, 197–212.

    CAS  Google Scholar 

  • Wess, J., Gdula, D., Brann, M.R. (1991). Site-directed mutagenesis of the m3 muscarinic receptor: identification of a series of threonine and tyrosine residies involved in agonist but not antagonist binding. EMBO J. 10, 3729–3734.

    PubMed  CAS  Google Scholar 

  • White, B.J., Howard, S., Cohen, S.G., Cohen, J.B. (1991). The hydrophobic photogeagent TID is a novel noncompetitive antagonist of the nicotinic acetylcholine receptor. J. Biol. Chem. 266, 21595–21607.

    PubMed  CAS  Google Scholar 

  • Wonnacott, S. (1987). Neurotoxin probes for neuronal nicotinic receptors. In Neurotoxins and their pharmacological implications, ed. P. Jenner, p. 209. New York: Raven.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Galzi, JL., Changeux, JP. (1992). The Nicotinic Acetylcholine Receptor, A Model of Ligand-Gated Ion Channels. In: Pullman, A., Jortner, J., Pullman, B. (eds) Membrane Proteins: Structures, Interactions and Models. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2718-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2718-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5205-4

  • Online ISBN: 978-94-011-2718-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics