Skip to main content

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 25))

  • 169 Accesses

Abstract

The technical capabilities of electron diffraction and high resolution electron microscopy have recently been advanced to the point that three-dimensional density maps can be obtained at sufficiently high resolution to allow an interpretation in terms of the structure at atomic resolution. The high scattering intensity of electrons compared to x-rays results in the fact that two-dimensional crystals, one molecule thick, are ideal specimens for electron crystallography. In the event that large, well ordered, three-dimensional crystals cannot be obtained, which are required for x-ray diffraction, electron diffraction now represents a practical alternative for high resolution structure analysis. The conditions needed to obtain two-dimensional crystals are, in general, very different from those which can produce three-dimensional crystals. As a result, attempts to obtain two-dimensional crystals complement the more traditional approach, which would be to obtain crystals for x-ray crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amos, L. A., Henderson, R. and Unwin, P. N. T. (1982) “Three-dimensional structure determination by electron microscopy of two-dimensional crystals”, Prog. Biophys. Mol. Biol. 39, 183–231.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, J.M. and Henderson, R. (1984) “Measurement and evaluation of electrondiffraction patterns from two-dimensional crystals”, Ultramicroscopy 14, 319–336.

    Article  CAS  Google Scholar 

  • DeRosier, D. J. and Klug, A. (1968) “Reconstruction of three-dimensional structures from electron micrographs”, Nature 217, 130–134.

    Article  Google Scholar 

  • Downing, K. H. (1991) “Spot-scan imaging in transmission electron microscopy”, Science 251, 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Downing, K. H. and Chiu, W. (1990) “Cold stage design for high resolution electron microscopy of biological materials”, Electron Microsc. Rev. 3, 213–226.

    CAS  Google Scholar 

  • Dubochet, J., Adrian, M., Chang, J. J., Homo, J.-C., Lepault, J., McDowall, A. W. and Shultz, P. (1988) “Cryo-electron microscopy of vitrified biological specimens”, Quart. Rev. Biophysics 21, 129–228.

    Article  CAS  Google Scholar 

  • Fromherz, P., Rocker, C. and Ruppel, D. (1986) “From discoid micelles to spherical vesicles. The concept of edge activity”, Faraday Discuss. Chem. Soc. 81, 39–48.

    CAS  Google Scholar 

  • Fuller, S. D., Capaldi, R. A. and Henderson, R (1979) “Structure of cytochrome c oxidase in deoxycholate-derived two-dimensional crystals”, J. Mol. Biol. 134, 305–327.

    Article  PubMed  CAS  Google Scholar 

  • Glaeser, R. M. (1982) “Electron microscopy”, in G. Ehrenstein and H. Lecar (eds.) Methods of Experimental Physics: Biophysics, Vol 20, Academic Press, New York, pp 391–444.

    Google Scholar 

  • Glaeser, R. M. (1985) “Electron crystallography of biological macromolecules”, Ann. Rev. Phys. Chem. 36, 243–275.

    Article  CAS  Google Scholar 

  • Glaeser, R. M. and Ceska, T. A. (1989) “High-voltage electron diffraction from bacteriorhodopsin (purple membrane) is measurably dynamical”, Acta Cryst. A45, 620–628.

    CAS  Google Scholar 

  • Glaeser, R. M., Zilker, A., Radermacher, M., Gaub, H. E., Hartmann, T. and Baumeister, W. (1991) “Interfacial energies and surface-tension forces involved in the preparation of thin, flat crystals of biological macromolecules for high-resolution electron microscopy”, J. Microscopy 161, 21–45.

    Article  CAS  Google Scholar 

  • Hayward, S. B. and Glaeser, R. M. (1979) “Radiation damage of purple membrane at low temperature”, Ultramicroscopy 4, 201–210.

    Article  CAS  Google Scholar 

  • Henderson, R. and Glaeser, R. M. (1985) “Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals”, Ultramicroscopy 16, 139–150.

    Article  CAS  Google Scholar 

  • Henderson R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. and Downing, K. H., (1990) “Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy”, J. Mol. Biol. 213, 899–929.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R. and Unwin, P. N. T. (1975) “Three-dimensional model of purple membrane obtained by electron microscopy”, Nature 257, 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Ho, M. H., Jap, B. K. and Glaeser, R. M. (1988) “Validity domain of the weak-phase-object approximation for electron diffraction of thin protein crystals”, Acta Cryst. A44, 878–884.

    CAS  Google Scholar 

  • Hoppe, W., Langer, R., Knesch, G. and Poppe, Ch. (1968) “Protein-Kritallstruktur analyse mit Elektronenstrahlen”, Naturwissenschaften 55, 333–336.

    Article  PubMed  CAS  Google Scholar 

  • Jap, B. K. (1988) “High-resolution electron diffraction of reconstituted PhoE porin”, J. Mol. Biol. 205, 407–419.

    Article  Google Scholar 

  • Jap, B. K., Walian, P. J. and Gehring, K. (1991) “Structural architecture of an outer membrane channel as determined by electron crystallography”, Nature 350, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Kong, T. (1989) “Reconstitution of halorhodopsin”, PhD Thesis, University of California, Berkeley.

    Google Scholar 

  • Kuhlbrandt, W. (1987) “Three-dimensional crystals of the light-harvesting chlorophylla/b protein complex from pea chloroplasts”, J. Mol. Biol. 194, 757–762.

    Article  PubMed  CAS  Google Scholar 

  • Kuhlbrandt, W. (1992) “Two-dimensional crystallization of membrane proteins”, Quart.Rev. Biophys. In Press.

    Google Scholar 

  • Kuhlbrandt, W. and Wang, D. N. (1991) “Three-dimensional structure of plant light-harvesting complex determined by electron crystallography”, Nature 350, 130–134.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, K., Haiker, H. and Weiss, H. (1987) “Three-dimensional structure of NADH:ubiquinone reductase (complex I) fromNeurosporamitochondria determined by electron microscopy of membrane crystals”, J. Mol. Biol. 194, 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Mannella, C. A. (1984) “Phospholipase-induced crystallization of channels in mitochondrial outer membranes”, Science 224, 165–166.

    Article  PubMed  CAS  Google Scholar 

  • Mohraz, M., Simpson, M. V. and Smith, P. R. (1987) “The three-dimensional structure of the Na,K-ATPase from electron microscopy”, J. Cell Biol. 105, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Sass, H. J., Buldt, G., Beckmann, E., Zemlin, F., van Heel, M., Zeitler, E., Rosenbusch, J. P., Dorset, D. L. and Massalski, A. (1989) “Densely packed ß-structure at the protein-lipid interface of porin is revealed by high-resolution cryo-electron microscopy”, J. Mol. Biol. 209, 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Sikerwar, S. S., Downing, K. H. and Glaeser, R. M. (1991) “Three-dimensional structure of an invertebrate intracellular communicating junction”, J. Struct. Biol. 106, 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A. C., ten Heggeler, B., Muller, R., Kistler, J. and Rosenbusch, J. P. (1977) “Ultrastructure of a periodic protein layer in the outer membrane ofEschericia coli”J. Cell Biol. 72, 292–301.

    Article  PubMed  CAS  Google Scholar 

  • Skriver, E., Maunsbach, A. B. and Jorgensen, P. L. (1981) “Formation of two-dimensional crystals in pure membrane-bound Na+K+-ATPase“, FEBS Lett. 131, 219–222.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A. C., ten Heggeler, B., Muller, R., Kistler, J. and Rosenbusch, J. P. (1977) “Ultrastructure of a periodic protein layer in the outer membrane ofEschericia coli”J. Cell Biol. 72, 292–301.

    Article  PubMed  CAS  Google Scholar 

  • Stokes, D. L. and Green, N. M. (1990) “Three-dimensional crystals of CaATPase from sarcoplasmic reticulum”, Biophys. J. 57, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K., Dux, L. and Martonosi, A. (1984) “Structure of the vanadate-inducedcrystals of sarcoplasmic reticulum Ca2+-ATPase”, J. Mol. Biol. 174, 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K. A. and Glaeser, R. M. (1974) “Electron diffraction of frozen, hydrated protein crystals”, Science 186, 1036–1037.

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima, C. and Unwin, N. (1990) “Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction”, J. Cell Biol. 111, 2623–2635.

    Article  PubMed  CAS  Google Scholar 

  • Unwin P. N. T. and Henderson, R. (1975) “Molecular structure determination by electron microscopy of unstained crystalline specimens”, J. Mol. Biol. 94, 425–440.

    Article  PubMed  CAS  Google Scholar 

  • Unwin, P. N. T. and Ennis, P. D. (1984) “Two configurations of a channel-forming membrane protein” Nature 307, 609–613.

    Article  PubMed  CAS  Google Scholar 

  • Unwin, N., Toyoshima, C. and Kubalek, E. (1988) “Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallizedTorpedopostsynaptic membranes” Nature 107, 1123–1138.

    CAS  Google Scholar 

  • Walian, P. J. and Jap, B. K. (1990) “Three-dimensional electron diffraction of PhoE 0porin to 2.8A resolution”, J. Mol. Biol. 215, 429–438.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Glaeser, R.M. (1992). Electron Crystallography of Membrane Proteins. In: Pullman, A., Jortner, J., Pullman, B. (eds) Membrane Proteins: Structures, Interactions and Models. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2718-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2718-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5205-4

  • Online ISBN: 978-94-011-2718-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics