Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 222))

  • 264 Accesses

Abstract

The manufacture of state-of-the-art integrated circuits uses UV optical projection lithography. Whether this technology will take the industry to quarter-micrometer minimum feature sizes and below is currently a subject of intense debate. In this paper we argue that proximity x-ray lithography is better matched to the “system problem” of lithography and for this reason offers the most cost-effective path to ultra-large-scale integrated circuits with feature sizes of one tenth micrometer and below (i.e., gigascale electronics and quantum-effect electronics).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjorkholm, J.E., Bokor, J., Eichner, L., Freeman, R.R., Gregus, J., Jewell, T.E., Mansfield, W.M., MacDowell, A.A., Raab, E.L., Silfvast, W.T., Szeto, L.H., Tennant, D.M., Waskiewicz, W.K., White, D.L., Windt, D.L., Wood, O.R., and Bruning, J.H. (1990) ‘Reduction Imaging at 14 nm using Multilayer-Coated Optics: Printing of Features Smaller than 0.1 μm’, J. Vac. Sci. Technol. B 8, 1509–1513.

    CAS  Google Scholar 

  2. Moel, A., Schattenburg, M.L., Carter, J.M., and Smith, H.I. (1990) ‘A Compact Low-Cost System for Sub-100nm X-ray Lithography’, J. Vac. Sci. Technol. B 8, 1648–1651.

    Google Scholar 

  3. Ogawa, T., Mochiji, K., Soda, Y., Kimura, T. (1989) ‘The Effects of Secondary Electrons from A Silicon Substrate on SR X-ray Lithography’, Japan J. Appl. Phys. Series 3, 120–123.

    Google Scholar 

  4. Early, K., Schattenburg, M.L., and Smith, H.I. (1990) ‘Absence of Resolution Degradation in X-ray Lithography for λ from 4.5 nm to 0.83 nm’, Microelectronic Engineering 11, 317–321.

    Article  CAS  Google Scholar 

  5. Deguchi, K., Ishiyama, T., Horiuchi, T., and Yoshikawa, A. (1990) ‘Effects of Photo-and Auger Electron Scattering on Resolution and Linewidth Control in SR Lithography’, Japan J. Appl. Phys. Series 4, 100–140.

    Google Scholar 

  6. Lin, B.J. (1990)’ A New Perspective on Proximity Printing: From Ultraviolet to X-ray’, J. Vac. Sci. Technol. B 8, 1539–1546.

    Article  CAS  Google Scholar 

  7. Guo, J.Z.Y., Chen, G., White, V., Anderson, P., and Cerrina, F. (1990) ‘Aerial Image Formation in Synchrotron Radiation-Based X-ray Lithography: The Whole Picture’, J. Vac. Sci. Technol. B 8, 1551–1556.

    Article  CAS  Google Scholar 

  8. Schattenburg, M.L., Li, K., Shin, R.T., Kong, J.A., and Smith, H.I. (1991) ‘Electromagnetic Calculation of Soft-X-ray Diffraction from 0.1 μm-scale Gold Structures’, J. Vac. Sci. Technol. B, Nov/Dec 1991.

    Google Scholar 

  9. Chu, W., Smith, H.I., and Schattenburg, M.L. (1991) ‘Replication of 50 nm Linewidth Device Patterns using Proximity X-ray Lithography at Large Gaps’, Appl. Phys. Lett. 59, 1641–1643.

    Article  Google Scholar 

  10. Early, K., Schattenbrug, M.L., Olster, D.B., Shepard, M.I., and Smith, H.I. (1991) ‘Diffraction in X-ray Proximity Printing: Comparing Theory and Experiment for Gratings, Lines, and Spaces’, Microelectronic Engineering (in press).

    Google Scholar 

  11. Moel, A., Chu, W., Early, K., Ku, Y.-C., Moon, E.E., Schattenburg, Tsai, F., Griffith, F.W., Haas, L.E., Fung, C.D., and Smith, H.I. (1991) ‘Fabrication and Characterization of High-Flatness Mesa-Etched Silicon Nitride X-ray Masks’, J. Vac. Sci. Technol. B, Nov/Dec 1991.

    Google Scholar 

  12. Wilson, A.D., Lapadula, C., Silverman, J.P., Viswanathan, R., Voelker, H., and Fair, R. (1989) ‘Control of Fixturing-Induced Distortion in X-ray Masks’, Vac. Sci. Technol. B 7, 1705–1708.

    Article  CAS  Google Scholar 

  13. Lenius, P., Engelstad, R., Palmer, S., Brodsky, E., and Cerrina, F. (1990) ‘Mechanical Distortions of Support Frames for X-ray Lithography Masks’, J. Vac. Sci. Technol. B 8, 1570–1574.

    Article  Google Scholar 

  14. Laird, D.L., and Engelstad, R.L. (1991) ‘Optimal Design of an X-ray Lithgoraphy Mask’, Vac. Sci. Technol. B Nov/Dec 1991.

    Google Scholar 

  15. Taniguchi, M., Funastsu, R., Inagaki, A., Okamoto, K., Kenbo, Y., Kato, Y., and Ochiai, I. in Electron-Beam, X-ray, and Ion-Beam Technology: Submicrometer Lithographies VIII, ed. A. Yanof (SPIE, Bellingham, WA1989) Vol. 1089, p. 240–251.

    Google Scholar 

  16. Oizumi, H., Iijima, S., and Mochiji, K. (1990) ‘Influence of Oxygen Upon Radiation Durability of SiN X-ray Mask Membranes’, Japan J. Appl. Phys. Series 4, 82–85.

    Google Scholar 

  17. Oda, M., Ozawa, A., Ohki, S., and Yoshihara, H. (1990) ‘Ta Film Properties for X-ray Mask Absorbers’, Japan J. Appl. Phys. Series 4, 96–99.

    Google Scholar 

  18. Oda, M., Ohkubo, T., Ozawa, A., Ohki, S., Kakuchi, M., and Yoshihara, H. (1990) ‘An X-ray Mask using SiC Membrane Deposited by ECR Plasma CVD’, Microelectronic Engineering 11, 241–244.

    Article  CAS  Google Scholar 

  19. Sugawara, M., Kobayashi, M., Yamaguchi, Y. (1989)’ Stress-Free and Amorphous Ta4B or Ta8SiB Absorbers for X-ray Masks’, J. Vac. Sci. Technol. B 7, 1561–1564.

    Article  CAS  Google Scholar 

  20. Lüthje, H., Harms, M., Matthiessen, B., and Bruns, A. (1989) ‘X-ray Lithography: Novel Fabrication Process for SiC/W Steppermasks’, Japan J. Appl. Phys. Series 3, 79–84.

    Google Scholar 

  21. Mitoh, M., Hori, M., Nadahara, S., and Mori, I. (1989) ‘Fabrication of an Ultra Low Stress Tungsten Absorber for X-ray Masks’, Japan J. Appl. Phys. Series 3, 85–88.

    Google Scholar 

  22. Ohta, T., Kawazu, Y., and Yamashita, Y. (1990) ‘Fabrication of X-ray Masks using W-CVD for Forming Absorber Pattern’, Japan J. Appl. Phys. Series 4, 78–81.

    Google Scholar 

  23. Ku, Y.-C., Smith, H.I., and Plotnik, I. (1990) ‘Low Stress Tungsten Absorber for X-ray Masks’, Microelectronic Engineering 11, 303–308.

    Article  CAS  Google Scholar 

  24. Ku, Y.-C, Ng, L.P., Carpenter, R., Lu, K., Smith, H.I., Haas, L.E., and Plotnik, I. (1991) ‘In-Situ Stress Monitoring and Deposition of Zero Stress W for X-ray Masks’, J. Vac. Sci. Technol. B Nov/Dec 1991.

    Google Scholar 

  25. Kishimoto, A., Kuniyoshi, S., Saito, N., Soga, T., Mochiji, K., and Kimura, T. (1990) ‘Minimization of X-ray Mask Distortion by Two-Dimensional Finite Element Method Simulation’, Japan J. Appl. Phys. Series 4, 92–95.

    Google Scholar 

  26. Suzuki, K. (1989) ‘X-ray Mask Technology’, Japan J. Appl. Phys. Series 3, 76–78.

    Google Scholar 

  27. Umbach, C.P., and Broers, A.N. (1990) ‘Experimental Determination of the Proximity Effect from 25 to 100 keV in Electron Beam Patterned X-ray Masks’, J. Vac. Sci. Technol. B 8, 1614–1617.

    Article  CAS  Google Scholar 

  28. Chu, W., Yen, A., Ismail, K., Shepard, M.I., Lezec, H.J., Musil, C.R., Melngailis, J., Ku, Y.-C, Carter, J.M., and Smith, H.I. (1989) ‘Sub-100 nm X-ray Mask Technology using Focused Ion Beam Lithography’, J. Vac. Sci. Technol. B 7, 1583–1585.

    Article  CAS  Google Scholar 

  29. Chu, W., Rishton, S.A., Schattenburg, M.L., Kern, D.P., and Smith, H.J. (1992) ‘Fabrication of 50 nm Line-and-Space X-ray Masks in Thick Au using a 50 keV Electron Beam System’, J. Vac. Sci. Technol. B, Jan/Feb 92.

    Google Scholar 

  30. Anderson, E.H., Boegli, V., Schattenburg, M.L., Kern, D., and Smith, H.J. (1991) ‘Metrology of Electron Beam Lithography Systems using Holographically Produced Reference Samples’, J. Vac. Sci. Technol. B, Nov/Dec 91.

    Google Scholar 

  31. Smith, H.I., Hector, S.D., Schattenbrug, M.L., and Anderson, E.H. (1991) ‘A new Approach to High Fidelity E-beam Lithography Based On An In-Situ Global Fiducial Grid’, J. Vac. Sci. Technol. B, Nov/Dec 1991.

    Google Scholar 

  32. Ishihara, S., Kanai, M., Une, A., and Suzuki, M. (1989) ‘A Vertical Stepper for Synchrotion X-ray Lithography’, J. Vac. Sci. Technol. B 7, 1652–1656.

    Article  CAS  Google Scholar 

  33. Suzuki, M., and Une, A. (1989) ‘An Optical-Heterodyne Alignment Technique for Quarter-Micron X-ray Lithography’, J. Vac. Sci. Technol. B 7, 1971–1976.

    Article  CAS  Google Scholar 

  34. Hara, K., Uchida, Y., Nomura, T., Kimura, S., Sugemoto, D., Yoshida, A., Miyake, H., Lida, T., and Hattori, S. (1989) ‘An Alignment Technique using Diffracted Moire Signals’, J. Vac. Sci. Technol. B 7, 1977–1979.

    Article  CAS  Google Scholar 

  35. Tabata, M. and Tojo, T, (1989) ‘High-Precision Interferometric Alignment using Checker Grating’, J. Vac. Sci. Technol. B 7, 1980–1983.

    Article  CAS  Google Scholar 

  36. Chen, G., and Cerrina, F. (1989) ‘X-ray Lithography Two-State Alignment System’, J. Vac. Sci. Technol. B 7, 1995–1999.

    Article  CAS  Google Scholar 

  37. G. Chen, J. Wallace, F. Cerrina, S. Palmer, and J. Randall (1991) ‘Experimental Evaluation of the Two-State Asignment System’, J. Vac. Sci. Technol. B, Nov/Dec 1991.

    Google Scholar 

  38. Kuniyoshi, S., Fujimito, K., and Kimura, T. (1989) ‘New Evaluation Approach of Alignment Signal from Resist-coated Patterns’, Japan J. Appl. Phys. Series 3, 124–129.

    Google Scholar 

  39. Oshida, Y. (1989) ‘Optical Lithography for 0.5 to 0.3 μm LSI’, Japan J. Appl. Phys. Series 3, 15–21.

    Google Scholar 

  40. Magome, N., Ota, K., and Nishi, K. (1990) ‘New Alignment Sensors for Optical Lithography’, Japan J. Appl. Phys. Series 4, 32–38.

    Google Scholar 

  41. Schattenburg, M.L., Tanaka, I., and Smith, H.I. (1987) ‘Microgap X-ray Nanolithography’, Microelectronic Engineering 6, 273–279.

    Article  CAS  Google Scholar 

  42. Schattenburg, M.L., Early, K., Ku, Y.-C, Chu, W., Shepard, M.I., The, S.C., Smith, H.I., Peters, D.W., Frankel, R.D., Kelly, D.R., and Drumheller, J.P. (1990) ‘Fabrication and Testing of 0.1 μm Linewidth Microgap X-ray Masks’, J. Sci. Technol. B 8, 1604–1608.

    Article  CAS  Google Scholar 

  43. SPIE 1991 Symposium on Microlithography, San Jose, 3-8 March 1991 (in press).

    Google Scholar 

  44. Wagner, A., Levin, J.P., Mauer, J.L., Blauner, P.G., Kirch, S.J., and Longo, P. (1990) ‘X-ray Mask Repair With Focsued Ion Beams’, J. Vac. Sci. Technol. B 8, 1557–1565.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smith, H.I., Schattenburg, M.L. (1992). Lithography for Manufacturing at 0.25 Micrometer and Below. In: Coffa, S., Priolo, F., Rimini, E., Poate, J.M. (eds) Crucial Issues in Semiconductor Materials and Processing Technologies. NATO ASI Series, vol 222. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2714-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2714-1_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5203-0

  • Online ISBN: 978-94-011-2714-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics