Skip to main content

Numerical Structural Optimization via a Relaxed Formulation

  • Chapter
Shape Optimization and Free Boundaries

Part of the book series: NATO ASI Series ((ASIC,volume 380))

  • 551 Accesses

Abstract

The basic problem of structural optimization is to choose the shape or composition of a structure so as to optimize some feature of its elastic behavior. The use of a relaxed formulation involving composite materials puts the theory on asound mathematical basis. It also leads to better designs than the traditional formulation, because the relaxed formulation has fewer local minima. These lectures explain the relaxed viewpoint as it applies to shape optimization of two-dimensional structures for minimum compliance in plane stress. They draw heavily from recent joint work with G. Allaire.

Support is gratefully acknowledged from NSF Grant DMS-9102829, ARO contract DAAL03-89-K-0039, and AFOSR Grant 90-0090.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Historical and bibliographic notes

  1. Y. Ding, Shape optimisation of strucutres: a literature survey, Comput. & Structures 24 (1986), 985–1004.

    Google Scholar 

  2. R. Haftka and R. Grandhi, Structural shape optimization-a survey, Comput. Methods Appl. Mech. Engrg. 57 (1986),91–106.

    Google Scholar 

  3. A. Atrek, SHAPE: a program for shape optimization of continuum structures, in: Computer Aided Design of Structures: Applications (C. Brebbia and S. Hernandez), Springer-Verlag, 1989, 135–144.

    Google Scholar 

  4. N. Banichuk, Problems and Methods of Optimal Structural Design, Plenum Press, 1983.

    Google Scholar 

  5. O. Pironneau, Optimal Shape Design lor Elliptic Systems, Springer-Verlag, 1984.

    Google Scholar 

  6. K.-T. Cheng and N. Olhoff, An investigation concerning optimal design of solid elastic plates, Internat. J. Solids and Structures 17s (1981),305–323.

    Google Scholar 

  7. F. Murat and L. Tartar, Calcul des variations et homogeneisation, in: Les méthodes de l’homogeniisation: Theorie et applications en physique, Collection de la Direction des etudes et recherche d’Electricité de France, Eyrolles, 1985, 316–369.

    Google Scholar 

  8. K. Lurie, A. Cherkaev, and A. Fedorov, Regularization of optimal design problems for bars and plates I, 11, J. Optim. Theory Appl. 37 (1982),499-521 and 523–543.

    Google Scholar 

  9. U. Raitum, On optimal control problems for linear elliptic equations, Soviet Math. Dokl. 20 (1979),129–132.

    Google Scholar 

  10. R. Kohn and G. Strang, Optimal design and relaxation of variational problems I-III, Comm. Pure Appl. Math. 39 (1986) 113-138, 139-182, 353–377.

    Google Scholar 

  11. A. Cherkaev and L. Gibiansky, Design of composite plates of extremal rigidity, loffe Physicotechnical Institute Report, 1984 (in Russian).

    Google Scholar 

  12. G. Rozvany, N. Olhoff, K.-T. Chen, and J. Taylor, On the solid plate paradox in structural optimization, J. Struct. Mech. 10, (1982), 1–32.

    Google Scholar 

  13. G. Rozvany, T. Ong, W. Szeto, R. Sandler, N. Olhoff, and M. Bendspe, Least-weight design of perforated plates I, 11, Internat. J. Solids and Structures 23 (1987),521-536 and 537–550.

    Google Scholar 

  14. M. Bendspe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg. 71 (1988), 197–224.

    Google Scholar 

  15. M. Bendspe and N. Kikuchi, Optimal shape design as a material distribution problem, Struct. Optim. I, (1989), 193–202.

    Google Scholar 

  16. M. Bendspe and H. Rodrigues, Integrated topology and boundary shape optimization of 2-D solids, Comput. Methods Appl. Mech. Engrg., to appear, 1992.

    Google Scholar 

  17. K. Suzuki and N. Kikuchi, Shape and layout optimization using the homogenization method, Comput. Methods Appl. Mech. Engrg., to appear, 1992.

    Google Scholar 

  18. K. Lurie and A. Cherkaev, G-closure of some particular sets of admissible material characteristics for the problem of bending of thin plates, J. Optim. Theory Appl. 42s (1984), 305–315.

    Google Scholar 

  19. R. Lipton, On the effective elasticity of a two-dimensional homogenized incompressible elastic composite, Proc. Roy. Boe. Edinburgh Beet. A 110 (1988), 45–61.

    Google Scholar 

  20. G. Francfort, Homogenization of a class of fourth order equations with application to incompressible elasticity, Proc. Roy. Boe. Edinburgh Beet. A 120 (1992),25–46.

    Google Scholar 

  21. J. Necas and I. Hlavacek, Mathematieal Theory of Elastic and Elasto-Plastic Bodies: an Introduetion, Elsevier, 1981.

    Google Scholar 

  22. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, 1976

    Google Scholar 

  23. K. Washizu, Variation al Methods in Elasticity and Plasticity, Pergamon Press, 1968.

    Google Scholar 

  24. I. Ekeland and R. Temam, Convex Analysis and Variation al Problems, North-Holland, 1976.

    Google Scholar 

  25. A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Btruetures, North-Holland, 1978.

    Google Scholar 

  26. E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics 127, Springer-Verlag, 1980.

    Google Scholar 

  27. P. Suquet, Une méthode duale en homogénéisation: application aux milieux élastiques, J. Mech. Theor. Appl., special issue (1982), 79-98.

    Google Scholar 

  28. V. Zhikov, S. Kozlov, O. Oleinik, and Ngoan, Averaging and G-convergence of differential operators, Russian Math. Surveys 34:5 (1979), 69-147.

    Google Scholar 

  29. R. Kohn and G. DalMaso, The local character of G-closure, in preparation.

    Google Scholar 

  30. R. Christensen, Mechanics of Composite Materials, Wiley-Interscience, 1979.

    Google Scholar 

  31. G. Backus, Long-wave elastic anisotropy produced by horizontallayering, J. Geophys. Res. 67 (1962),4427.

    Google Scholar 

  32. W. McConnell, On the approximation of elliptic operators with discontinuous coefficients, Ann. Seuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 121–137.

    Google Scholar 

  33. W. McConnell, On the approximation of elliptic operators with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 121–137.

    Google Scholar 

  34. L. Tartar, Remarks on homogenization, in: Homogenization and Effective Moduli of Materials and Media (J.L. Ericksen et al., eds.) Springer-Verlag, 1986,228–246.

    Google Scholar 

  35. G. Allaire and R. Kahn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures, preprint 1992.

    Google Scholar 

  36. A. Cherkaev, Variational Methods of Optimization of Structures of Inhomogeneous Bodies, Doctoral Dissertation, Leningrad University, 1989.

    Google Scholar 

  37. R. Kohn and M. Vogelius, Relax ation of a variational method for impedance computed tomography, Comm. Pure Appl. Math. 40 (1987), 745–777.

    Google Scholar 

  38. J.-M. Lagache, Treillis de volume minimal dans une région donnée, J. de Mécanique 20 (1981),415–448.

    Google Scholar 

  39. W. Hemp, Optimum Structures, Clarendon Press, 1973.

    Google Scholar 

  40. W. Prager and G. Rozvany, Optimization of structural geometry, in: Dynamical Systems (A. Bednarek and L. Cesari, eds.), Academic Press, 1977,265–294.

    Google Scholar 

  41. Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids 11 (1963), 127–140.

    Google Scholar 

  42. R. Hill, New derivations of some elastic extremum principles, in: Progress in Applied Mechanics-The Prager Anniversary Volume, Macmillan, 1963, 99–106.

    Google Scholar 

  43. M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites, SIAM J. Appl. Math. 47 (1987), 1216–1228.

    Google Scholar 

  44. R. Kohn and R. Lipton, Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials, Arch. Rational MechoAnal. 102 (1988), 331–350.

    Google Scholar 

  45. G. Milton and R. Kohn, Variational bounds on the effective moduli of anisotropic composites, J. Mech. Phys. Solids 36 (1988), 597–629.

    Google Scholar 

  46. G. Milton, Modeling the properties of composites by laminates, in: Homogenization and Effective Moduli of Materials and Media (J. Ericksen et al. eds.) SpringerVerlag, 1986, 150–174.

    Google Scholar 

  47. L. Tartar, Estimations fines des coefficients homogénéisés, in: Ennio de Giorgi’s Colloquium (P. Kree, ed.), Pitman, 1985, 168–187.

    Google Scholar 

  48. G. Francfort and F. Murat, Homogenization and optimal bounds in linear elasticity, Arch. Rational Mech. Anal. 94 (1986),307–334.

    Google Scholar 

  49. G. Allaire and R. Kohn, Optimal bounds on the effective behavior of a mixture of two well-ord ered elastic materials, Quart. Appl. Math. (1992), in press.

    Google Scholar 

  50. R. Kohn, Relaxation of a double-well energy, Contino Mech. Thermodyn. 3 (1991), 193–236.

    Google Scholar 

  51. L. Gibiansky and A. Cherkaev, Microstructures of composites of extremal rigidity and exact estimates of the associated energy density, Ioffe Physicotechnical Institute Preprint 1145, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kohn, R.V. (1992). Numerical Structural Optimization via a Relaxed Formulation. In: Delfour, M.C., Sabidussi, G. (eds) Shape Optimization and Free Boundaries. NATO ASI Series, vol 380. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2710-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2710-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1944-3

  • Online ISBN: 978-94-011-2710-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics