Skip to main content

Assessment of hypertrophy and regression in arterial hypertension: Value of magnetic resonance Imaging

  • Chapter
Cardiovascular Nuclear Medicine and MRI

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 128))

  • 74 Accesses

Summary

Increasing interest has been paid to the effects of antihypertensive treatment on the myocardium. In particular regression of left ventricular hypertrophy (LVH) has been the focus of recent studies. Regression of LVH can be decisive in improving oxygen consumption of the myocardium and may prevent serious long-term cardiac complications of hypertension, such as dilatation of tissue structures and heart failure. Regression of hypertrophy under antihypertensive treatment was first demonstrated in rats. Marked regression was observed after alpha-methyldopa, beta-blocking agents, and angiotensin converting enzyme (ACE) inhibitors. Effects of diuretics and direct vasodilators like hydralazine and minoxidil were less impressive. In patients with hypertension, cardiologists first made use of echocardiography for the direct in vivo demonstration of regression of hypertrophy. Previous to echocardiography, only indirect electrocardiographic methods were available. With echocardiography, antihypertensive drugs such as alphamethyldopa, beta-blocking agents, and ACE-inhibitors showed similar effects on LVH as observed in rats. Thallium-201 perfusion imaging for quantification of hypertrophy has been shown useful for demonstration of L VH, but the radionuclide technique lacks the spatial resolution to accurately determine regression of L VH. Magnetic resonance imaging (MRI) has emerged as a new imaging modality the heart since 1983. Due to its high spatial resolution, MRI is an excellent technique for assessing cardiac dimensions, volumes and myocardial mass. MRI is therefore very suitable to determine changes in these myocardial parameters before and after antihypertensive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holt J. P., Rhode E. A., Kines H. Ventricular volumes and body weight in mammals. Am J Physiol 1968;215:704–15.

    PubMed  CAS  Google Scholar 

  2. Pickering G. Systemic arterial hypertension. In: Fishman A. P., Richards D. W., editors. Circulation of the blood: men and ideas. Bethesda: American Physiological Society 1982;487–541.

    Google Scholar 

  3. Chanutin A, Barksdale E. E. Experimental renal insufficiency produced by partial nephrectomy: relationship of left ventricular hypertrophy, width of cardiac muscle fiber and hypertension in rat. Arch Intern Med 1933;52:739–51.

    Article  Google Scholar 

  4. Frohlich E. D., Pfeffer M. A. Heart and hypertension: the magnitude of the problem. In: Safar M. E., Fouad-Tarazi F. M., editors. The heart in hypertension: a tribute to Robert Tarazi (1925-1986). Dordrecht: Kluwer Academic Publishers 1989;169–79.

    Chapter  Google Scholar 

  5. Bugaisky L, Zak R. Biological mechanism of hypertrophy. In: Fozzard H. A., Jennings R. B., Haber H, Katz A. M.,, editors. The heart and cardiovascular system: scientific foundations. New York, Raven Press 1986;1491–506

    Google Scholar 

  6. Wikman-Coffelt J., Parmley W. W., Mason D. T. The cardiac hypertrophy process. Analyses of factors determining pathological vs physiological development. Circ Res 1979;45:697–707.

    Article  PubMed  CAS  Google Scholar 

  7. Tarazi R. C., Sen S. Catecholamines and cardiac hypertrophy. In: Mezey K. C., Caldwell A. D. S., editors. Catecholamines and the heart. The Royal Society of Medicine 1979.

    Google Scholar 

  8. Schreiber S. S., Evans C. D., Oratz M., Rothschild M. A., Protein synthesis and degradation in cardiac stress. Circ Res 1981;48:601–11.

    Article  PubMed  CAS  Google Scholar 

  9. Lundgren Y, Hallback M, Weiss L, Folkow B. Rate and extent of adaptive cardiovascular changes in rats during experimental renal hypertension. Acta Physiol Scand 1974;91:103–15.

    Article  PubMed  CAS  Google Scholar 

  10. Fletcher P. J., Korner P. I., Angus J. A., Oliver J. R., Changes in cardiac output and total peripheral resistance during development of renal hypertension in the rabbit: lack of conformity with the autoregulation theory. Circ Res 1976;39:633–9.

    Article  PubMed  CAS  Google Scholar 

  11. Folkow B. U., Hallback M. I., Physiopathology of spontaneous hypertension in rats. In: Genest J, Koiw E, Kuchel O, editors. Hypertension: physiopathology and treatment. New York: McGraw-Hill, 1977;507–29.

    Google Scholar 

  12. Korner P. I., Oliver J. R, Casley D. J., Effect of dietary salt on hemodynamic of established renal hypertension in the rabbit. Implications for the autoregulation theory of hypertension. Hypertension 1980;2:794–801.

    Article  PubMed  CAS  Google Scholar 

  13. Broughton A., Korner P. I., Basal and maximal inotropic state in renal hypertensive dogs with cardiac hypertrophy. Am J Physiol 1983;245:H33–41.

    PubMed  CAS  Google Scholar 

  14. Pfeffer M. A., Frohlich E. D., Hemodynamic and myocardial function in young and old normotensive and spontaneously hypertensive rats. Circ Res 1972;32 (Suppl 1):28–38.

    Google Scholar 

  15. Sen S, Tarazi R. C., Khairallah P. A., Bumpus F. M., Cardiac hypertrophy in spontaneously hypertensive rats. Circ Res 1974;35:775–81.

    Article  PubMed  CAS  Google Scholar 

  16. Adams M. A., Bobik A, Korner P. I., Differential development of vascular and cardiac hypertrophy in genetic hypertension. Relationship to sympathetic function. Hypertension 1989;14:191–202.

    Article  PubMed  CAS  Google Scholar 

  17. Carlier P., Radelet M., Montrieux C., Greimers R, Rorive G. L., Réponse proliférative de la paroi artérielle dans I’HTA: hyperplasie vs polyploïdie. Arch Mal Coeur Vaisseaux 1985;78:1710–5.

    CAS  Google Scholar 

  18. Pickering G. W. High blood pressure. 2nd ed. London: J. & A. Churchill, 1968.

    Google Scholar 

  19. Levine R. A., Gillam L. D., Weyman A. E., Echocardiography in cardiac research. In: Fozzard H. A, Jennings R. B., Haber H, Katz A. M., editors. The heart and cardiovascular system: scientific. New York: Raven Press, 1986;369–452.

    Google Scholar 

  20. Abi-Samra F, Fouad F. M., Tarazi R. C., Determinants of left ventricular hypertrophy and function in hypertensive patients. An echocardiographic study. Am J Med 1983;75(3A):26–33.

    Article  PubMed  CAS  Google Scholar 

  21. Hammond I. W., Devereux R. B., Alderman M. H., et at. The prevalence and correlates of echocardiographic left ventricular hypertrophy among employed patients with uncomplicated hypertension. J Am Coli Cardiol 1986;7:639–50.

    Article  CAS  Google Scholar 

  22. Devereux R. B., Casale P. N., Hammond I. W., et at. Echocardiographic detection of pressure overload left ventricular hypertrophy: effect of criteria and patient population. J Clin Hypertens 1987;3:66–78.

    PubMed  CAS  Google Scholar 

  23. Laufer E, Jennings G. L., Korner P. I., Dewar E. Prevalence of cardiac structural and functional abnormalities in untreated primary hypertension. I published erratum appears in Hypertension 1989 May 13(5):498J. Hypertension 1989;13:151–62.

    Article  PubMed  CAS  Google Scholar 

  24. Fisher R. A., Statistical methods for research workers. 9th ed. Edinburgh: Oliver & Boyd 1946;285–98.

    Google Scholar 

  25. Korner P. I., Cardiac structure and function in animal models and in human hypertension. In: Safar M. E., Fouad-Tarazi F. M., editors. The Heart in Hypertension: a tribute to Robert Tarazi (1925-1986). Dordrecht: Kluwer Academic Publishers, 1989;145–68.

    Chapter  Google Scholar 

  26. Bevan R. D., Eggena P., Hume W. R., van Marthens E, Bevan J. A. Transient and persistent changes in rabbit blood vessels associated with maintained elevation in arterial pressure. Hypertension 1980;2:63–72.

    Article  PubMed  CAS  Google Scholar 

  27. Owens G. R., Rabinovitch P. S., Schwartz S. M. Smooth musicle cell hypertrophy vs hyperplasia in hypertension. Proc Natl Acad Sci USA 1981;78:7759-63.

    Google Scholar 

  28. Carlier P. G., Rorive G. L., Barbason H. Kinetics of proliferation of rat aortic smooth muscle cells in Goldblatt one-kidney,one-clip hypertension. Clin Sci 1983;65:351–7.

    PubMed  CAS  Google Scholar 

  29. Carlier P. G., Rorive G. L., Pathogenesis and reversibility of aortic changes in experimental hypertension. J Cardiovasc Pharmacol 1985;7 (Suppl 2):546–51.

    Article  Google Scholar 

  30. Wolinsky H. Effects of hypertension and its reversal on the thoracic aorta of male and female rats. Morphological and chemical studies. Circ Res 1971;28:622–37.

    Article  PubMed  CAS  Google Scholar 

  31. Foidart J. M., Rorive G. L., Nusgens B. Y., Lapiere C. M., The relationship between blood pressure and aortic collagen metabolism in renal hypertensive rats. Clin Sci Mol Med (Suppl) 1978;4:275–9s.

    Google Scholar 

  32. Foidart J. M., Rorive G. L., Carlier P. G., Nusgens B, Lapiere C. H., Lambotte R. Hypertension experimentale: modifications precoces du metabolisme du collagene. Rev Med Liege 1983;38:537–49.

    PubMed  CAS  Google Scholar 

  33. Rorive G. L., Carlier P. G., Foidart J. M., The structural responses of the vascular wall in experimental hypertension. In: Zanchetti A, Tarazi R. C., editors. Pathophysiology of hypertension. Amsterdam: Elsevier, 1986;428–53.

    Google Scholar 

  34. Wolinsky H. Long-term effects of hypertension on the rat aortic wall and their relation to concurrent aging changes. Morphological and chemical studies. Circ Res 1971;30:301–9.

    Article  Google Scholar 

  35. Nakada T, Lovenberg W. Lysine incorporation in vessels of spontaneously hypertensive rats: effect of adrenergic drugs. Eur J Pharmacol 1978;48:87–96.

    Article  PubMed  CAS  Google Scholar 

  36. Weiss L, Lundgren Y. Chronic antihypertensive drug treatment in young spontaneously hypertensive rats: effects on arterial blood pressure, cardiovascular reactivity and vascular design. Cardiovasc Res 1978;12:744–51.

    Article  PubMed  CAS  Google Scholar 

  37. Owens G. K. Differential effects of antihypertensive drug therapy on vascular smooth muscle cell hypertrophy, hyperploidy, and hyperplasia in the spontaneously hypertensive rat. Circ Res 1985;56:525–36.

    Article  PubMed  CAS  Google Scholar 

  38. Carlier P. G., Contribution expérimentale à la prevention des altérations de structure cardiovasculaires associées à l’hypertension artérielle [dissertation]. Liège: Université de Liége 1987.

    Google Scholar 

  39. Ehrhart L. A., Ferrario C. M. Collagen metabolism and reversal of aortic medial hypertrophy in spontaneously hypertensive rats treated with methyldopa. Hypertension 1983;3:479–84.

    Article  Google Scholar 

  40. Sen S., Bumpus F. M. Collagen synthesis in development and reversal of cardiac hypertrophy in spontaneously hypertensive rats. Am J Cardiol 1979;44:954–8.

    Article  PubMed  CAS  Google Scholar 

  41. Ruskoaho H. J., Savolainen E. R. Effects of long-term verapamil treatment on blood pressure, cardiac hypertrophy and collagen metabolism in spontaneously hypertensive rats. Cardiovasc Res 1985;19:355–62.

    Article  PubMed  CAS  Google Scholar 

  42. Udenfriend S., Cardinale G., Spector S. Hypertension-induced fibrosis and its reversal by antihypertensive drugs. In: Laragh J. H., Buhler F. R., Seldin D. W., editors. Frontiers in hypertension research. Springer, 1981;404–11.

    Google Scholar 

  43. Carlier P. G., Warling X., Rorive G. L. Prevention of the cardiovascular structural changes in the spontaneously hypertensive rat. J Hypertens 1984;2:429–36.

    Google Scholar 

  44. Oshima T., Matsushita Y., Miyamoto M., Koike H. Effects on long-term blockade of angiotension converting enzyme with captopril on blood pressure and aortic prolyl hydroxylase activity in spontaneously hypertensive rats. Eur J Pharmacol 1983;91:283–6.

    Article  PubMed  CAS  Google Scholar 

  45. Carlier P. G., Smelten N. S., Rorive G. L. Reversion of cardiac, arteriolar, and arterial changes following antihypertensive treatment. In: Safar M. E., Fouad-Tarazi F. M.,, editors. The heart in hypertension: a tribute to Robert Tarazi (1925-1986). Dordrecht: Kluwer Academic Publishers 1989;395–410.

    Chapter  Google Scholar 

  46. Hamrell B. B., Low R. B., The relationship of mechanical Vmax to myosin ATPase activity in rabbit and marmot ventricular muscle. Pflugers Arch 1978;337:119–24.

    Article  Google Scholar 

  47. Lompre A. M., Mercadier J. J., Wisnewsky C., et al. Species-dependent and age-dependent changes in the relative amounts of cardiac myosin isozymes in mammals. Dev Biol 1981;84:286–90.

    Article  PubMed  CAS  Google Scholar 

  48. Mercadier J. J., Lompre A. M., Wisnewsky C, et al. Myosin isozyme changes in several models of rat cardiac hypertrophy. Circ Res 1981;49:525–32.

    Article  PubMed  CAS  Google Scholar 

  49. Gorza L., Pauletto P, Pessina A. C., Sartore S., Schiaffino S. Isomyosin distribution in normal and pressure overloaded rat ventricular myocardium. An immunohistochemical study. Circ Res 1981;49:1003–9.

    Article  PubMed  CAS  Google Scholar 

  50. Hoh Y. F., Yeoh G. P., Thomas M. A., Higginbottom L. Structural differences in the heavy chains of rat ventricular myosin isozymes. FEBS Lett 1979;97:330–4.

    Article  PubMed  CAS  Google Scholar 

  51. Sinha A. M., Umeda P. K., Kavinsky C. J., et al. Molecular cloning of mRNA sequence for cardiac alpha-and beta-form myosin heavy chains: expression in ventricles of normal, hypothyroid and thyrotoxic rabbits. Proc Natl Acad Sci USA 1982;79:5847–51.

    Article  PubMed  CAS  Google Scholar 

  52. Mahdavi V., Chambers A. P., Nadal-Ginard B. Cardiac alpha-and beta-myosin heavy chain genes are organized in tandem. Proc Natl Acad Sci USA, 1984;81:2626–30.

    Article  PubMed  CAS  Google Scholar 

  53. Sen S., Young D. R., Role of sodium in modulation of myocardial hypertrophy in renal hypertensive rats. Hypertension 1986;8:918–24.

    Article  PubMed  CAS  Google Scholar 

  54. Dussaule J. C., Michel J. B., Auzan C., Schwartz K., Corvol P., Menard J. Effect of antihypertensive treatment on the left ventricular isomyosin profile in one-clip, two-kidney hypertensive rats. J. Pharmacol Exp Ther 1986;236:512–8.

    PubMed  CAS  Google Scholar 

  55. Sen S. Regression of cardiac hypertrophy: experimental animal model. In: Safar M. E., Fouad-Tarazi F. M., editors. The heart in hypertension: a tribute to Robert Tarazi (1925-1986). Dordrecht: Kluwer Academic Publishers, 1989;301–20.

    Chapter  Google Scholar 

  56. Sen S. Alteration in myocardial collagen phenotypes in spontaneously hypertensive rats (abstract). J Moll Cell Cardiol 1982;14 (Suppl 1):60.

    Google Scholar 

  57. Weber K. T., Janicki J. S., Pick R., et al. Collagen in the hypertrophied, pressure-overloaded myocardium. Circulation 1987;75(1 pt 2):140–7.

    Google Scholar 

  58. Sen S., Tarazi R. C., Bumpus F. M. Cardiac hypertrophy and antihypertensive therapy. Cardiovasc Res 1977;11:427–33.

    Article  PubMed  CAS  Google Scholar 

  59. Motz W., Strauer B. Regression of structural cardiovascular changes by antihypertensive therapy. Hypertension 1984;6:III133–9.

    Article  PubMed  CAS  Google Scholar 

  60. Tarazi R. C., Fouad F. M., Reversal of cardiac hypertrophy in humans. Hypertension 1984;6:III140–6.

    Article  PubMed  CAS  Google Scholar 

  61. Fletcher P. J. Baroreceptor heart rate reflex in rabbits after reversal of renal hypertension. Am J Physiol 1984;246:H261–6.

    PubMed  CAS  Google Scholar 

  62. Casale P. N., Devereux R. B., Alonso D. R., Campo E., Kligfield P., Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: Validation with autopsy findings. Circulation 1987;75:565–72.

    Article  PubMed  CAS  Google Scholar 

  63. Reichek N., Devereux R. B. Left ventricular hypertrophy: relationship of anatomic, echocardiographic and electrocardiographic findings. Circulation 1981;63:1391–8.

    Article  PubMed  CAS  Google Scholar 

  64. Frohlieh E. D. Left ventricular hypertrophy as a risk factor. Cardiol Clin 1986;4:137–44.

    Google Scholar 

  65. Kannel W. B., Dannenberg A. L., Levy D., Population implications of electrocardiographic left ventricular hypertrophy. Am J Cardiol 1987;60:851–931.

    Article  Google Scholar 

  66. Kannel W. B., Doyle J. T., McNamara P. M., Quickenton P., Gordon T., Precursors of sudden coronary death: Factors related to the incidence of sudden death. Circulation 1975;51:606–13.

    Article  PubMed  CAS  Google Scholar 

  67. Messerli F. H., Ventura H. O., Elizardi D. J., Dunn F. G., Frohlich E. D. Hypertension and sudden death. Increased ventricular ectopic activity in left ventricular hypertrophy. Am J Med 1984;77:18–22.

    Article  PubMed  CAS  Google Scholar 

  68. McLenachan J. M., Henderson E., Morris K. I., Dargie H. J. Ventricular arrhythmias in patients with hypertensive left ventricular hypertrophy. N Engl J Med 1987;317:787–92.

    Article  PubMed  CAS  Google Scholar 

  69. Devereux R. B., Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomie validation of the method. Circulation 1977;55:613–8.

    Article  PubMed  CAS  Google Scholar 

  70. Eichstädt H., Bubenheimer P., Ferber B., Riesterer H. Welche Bedeutung hat die Echokardiographie zur Beurteilung der linksventrikulären Hypertrophie? Verh Dtsch Ges Kreislaufforsch 1977;43:400–1.

    Article  PubMed  Google Scholar 

  71. Eichstädt H., Felix R., Langer M., Schmutzler H. Left ventricular hypertrophy regression under therapy with the ACE-inhibitor Ramipril-a study with magnetic resonance imaging (abstract). Chest 1986;89(6 Suppl):496.

    Google Scholar 

  72. Eichstädt H, Felix R., Langer M., Schmutzler H. Hypertrophy regression under therapy with the ACE-inhibitor Ramipril-a study with magnetic resonance imaging (abstract). Abstracts of the Xth World Congress of Cardiology; 1986 Sept. 14-19; Washington. Abstr. Nr. 3939.

    Google Scholar 

  73. Eichstädt H. W., Felix R., Langer M., et al. Use of nuclear magnetic resonance imaging to show regression of hypertrophy with ramipril treatment. Am J Cardiol 1987;59:98D–I03D.

    Article  PubMed  Google Scholar 

  74. Eichstädt H., Langer M., Skarupke W., Felix R., Schmutzler H. Hypertrophy regression in hypertensive hearts during long-term treatment with Nitrendipine-measurements with MR-tomography (abstract). 12th Scientific Meeting of the International Society of Hypertension. 1988, May 22-26, Kyoto, Abstractbook No. 1277.

    Google Scholar 

  75. Eichstädt H., Richter W., Baeder M., et al. Demonstration of hypertrophy-regression with magnetic resonance tomography under the new adrenergic inhibitor Moxonidine. Cardiovase Drugs Ther 1989;3:583–9.

    Google Scholar 

  76. Eichstädt H., Mertens D., Dei N., Rupp C. Magnetic resonance measurements for quantification of left ventricular hypertrophy regression under the treatment with Lisinopril. J Mol Cell Cardiol 1990 (abstract); 22 (Suppl 5):SI4.

    Google Scholar 

  77. Strauer B. E. The heart in hypertension. Berlin: Springer 1981.

    Book  Google Scholar 

  78. Eichstädt H., Kraemer R., Dougherty F. C., Schneider R., Felix R., Schmutzler H. Hypertrophieregression unter chronischer Betablockade. Nachweis durch quantitative Schichtszintigraphie. Z Kardiol 1983;72:69–74.

    Google Scholar 

  79. Büll U., Strauer B. E., Hast B., Niendorf H. P. Die 201-Thallium-Szintimetrie des Herzens als neues Verfahren zur funktionellen Differenzierung der koronaren Herzkrankheit. ROFO 1979;124:434–43.

    Article  Google Scholar 

  80. Büll U., Strauer B. E., Assessment of left ventricular muscle mass with 201-thallium myocardial imaging. In: Strauer B. E., editor. The heart in hypertension. Berlin, Springer, 1981;345–56.

    Google Scholar 

  81. Wollam G. L., Hall W. D., Porter V. D., et al. Time course of regression of left ventricular hypertrophy in treated hypertensive patients. Am J Med 1983;75(3A):100–10.

    Article  PubMed  CAS  Google Scholar 

  82. Kazda S., Garthoff B., Thomas G. Antihypertensive effect of calcium antagonists in rat differs from that of vasolidators. Clin Sci 1982;63 (Suppl 8):363s–5s.

    Google Scholar 

  83. Smith V. E., White W. B., Meeran M. K., Karimeddini M. K. Improved left ventricular filling accompanies reduced left ventricular mass during therapy of essential hypertension. J Am Coll Cardiol 1986;8:1449–54.

    Article  PubMed  CAS  Google Scholar 

  84. Sen S., Tarazi R. C., Bumpus F. M. Effect of converting enzyme inhibitor (SQ14,225) onmyocardial hypertrophy in spontaneously hypertensive rats. Hypertension 1980;2:169–72.

    Article  PubMed  CAS  Google Scholar 

  85. Nakashima Y., Fouad F. M., Tarazi R. C. Regression of left ventricular hypertrophy from systemic hypertension by enalapril. Am J. Cardiol 1984;53:1044–9.

    Article  PubMed  CAS  Google Scholar 

  86. Frohlich E. D., Tarazi R. C. Is arterial pressure the sole factor responsible for hypertensive cardiac hypertrophy? Am J Cardiol 1979;44:959–63.

    Article  PubMed  CAS  Google Scholar 

  87. Pfeffer M. A., Pfeffer J. M., Weiss A. K., Frohlich E. D. Development of SHR hypertension and cardiac hypertrophy during prolonged beta blockade. Am J Physiol 1977;232:H639–44.

    PubMed  CAS  Google Scholar 

  88. Lindpaintner K., Sen S. Role of beta 1-adrenoreceptors in hypertensive cardiac hypertrophy. J Hypertens 1987;5:663–9.

    Article  PubMed  CAS  Google Scholar 

  89. Franz I. W., Wiemel D., Behr D. W., Ketelhut R. Ruckbildung der Myokardhypertrophie Hochdruckkranker unter chronischer beta-rezeptorenblockade. Dtsch Med Wochenschr 1986;111:530–4.

    Article  PubMed  CAS  Google Scholar 

  90. Dunn F. G., Ventura H. O., Messerli F. H., Kobrin I., Frohlich D. Time course of regression of left ventricular hypertrophy in hypertensive patients treated with atenolol. Circulation 1987;76:254–8.

    Article  PubMed  CAS  Google Scholar 

  91. Rowlands D. B., Glover D. R., Stallard T. J., Littler W. A. Control of blood pressure and reduction of echocardiographically assessed left ventricular mass with once-daily timolol. Br J Clin Pharmacol 1982;14:89–95.

    Article  PubMed  CAS  Google Scholar 

  92. Ishise S., Pegram B. L., Frohlich E. D. Disparate effects of methyldopa and clonidine on cardiac mass and haemodynamics in rats. Clin Sci 1980;59 (Suppl 6):449S–52S.

    PubMed  CAS  Google Scholar 

  93. Pegram B. L., Ishise S., Frohlich E. D. Effect of methyldopa, clonidine, and hydralazine on cardiac mass and haemodynamics in Wistar Kyoto and spontaneously hypertensive rats. Cardiovasc Res 1982;16:40–6.

    Article  PubMed  CAS  Google Scholar 

  94. Feisal K., Eckstein J. W., Horsley A. W., Keasling H. H. Effects of chlorothiazide on fore arm vascular responses to norepinephrine. J Appl Physiol 1961;16:549–52.

    PubMed  CAS  Google Scholar 

  95. Gifford R. W. Management of hypertensive patients with cardiac problems. In: Safar M. E., Fouad-Tarazi F. M., editors: The heart in hypertension: a tribute to Robert Tarazi (1925-1986). Dordrecht: Kluwer Academic Publishers 1989:221–30.

    Chapter  Google Scholar 

  96. Farmer R. G., Gifford R. W. Jr, Hines E. A. Jr. Effect of medical treatment on severe hypertension. A follow-up study of 161 patients with group 3 and group 4 hypertension. Arch InternMed 1963;112:118–28.

    Article  PubMed  CAS  Google Scholar 

  97. Dorph S., Leth A., Degnbol B., From A. Visceral changes in severe hypertension and their response to drug treatment. Acta Med Scand 1970;187:411–7.

    Article  PubMed  CAS  Google Scholar 

  98. Hypertension Detection and Follow-up Program Cooperative Group. Hypertension 1985;7:105–12.

    Article  Google Scholar 

  99. Freis E. D. Electrocardiographic changes in the course of antihypertensive treatment. Am J Med 1983;75(3A):111–5.

    PubMed  CAS  Google Scholar 

  100. Bolli P., Burkart F., Vesanen K., Baker J. L., Pinto M., Buhler F. R. Electrocardiographic changes during antihypertensive therapy in the International Prospective Primary Prevention Study in Hypertension. Hypertension 1987;9(6 pt 2):III69–74.

    Article  PubMed  CAS  Google Scholar 

  101. The effect of treatment on mortality in ‘mild’ hypertension: results of the hypertension detection and follow-up program. N Engl J Med 1982;307:976–80.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eichstaedt, H. (1992). Assessment of hypertrophy and regression in arterial hypertension: Value of magnetic resonance Imaging. In: Reiber, J.H.C., Van Der Wall, E.E. (eds) Cardiovascular Nuclear Medicine and MRI. Developments in Cardiovascular Medicine, vol 128. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2666-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2666-3_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5179-8

  • Online ISBN: 978-94-011-2666-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics