Skip to main content

Reconstruction and filtering methods for quantitative cardiac SPECT imaging

  • Chapter
Cardiovascular Nuclear Medicine and MRI

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 128))

Summary

Cardiac SPECT has become an important imaging tool for the diagnosis of cardiac diseases. In order to obtain the best image quality for clinical diagnosis, it is necessary to understand factors which affect reconstructed images. The understanding allows us to devise image reconstruction and filtering methods which provide quantitative cardiac SPECT images. In this paper, we demonstrate individual and collective effects of major factors which degrade cardiac SPECT images obtained using conventional reconstruction and filtering methods with 180° and 360° prajection data. We also present reconstruction methods which provide accurate compensation for the image degrading factors. The improved reconstructed images are compared with those obtained from conventional methods in terms of artifacts, distortions, spatial resolution, contrast, noise and quantitative accuracy. Data from a simulation study using a realistic cardiac-chest phantom and fram a clinical Tl-201 study are used in the investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaszczak R. J, Coleman R. E. Single photon emission computed tomography (SPECT): Principles and instrumentation. Invest Radiol 1985;20:897–910.

    Article  PubMed  CAS  Google Scholar 

  2. Fintel D. J, Links J. M, Brinker J. A, Frank T. L, Parker M, Becker L. C. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis. J Am Coll Cardiol 1989;13:600–12.

    Article  PubMed  CAS  Google Scholar 

  3. Kiat H, Berman D. S, Maddahi J. Comparison of planar and tomographie exercise thallium-201 imaging methods for the evaluation of coronary artery disease. J Am Coll Cardiol 1989;13:613–6.

    Article  PubMed  CAS  Google Scholar 

  4. Huesman R. H, Gullberg G. T, Greenberg W. L, Budinger T. F. User manual: Donner algorithms for reconstruction tomography. California: Lawrence Berkeley Laboratory, University of California, 1977.

    Google Scholar 

  5. Metz C. E. A mathematical investigation ofradioisotope scan image processing [dissertation]. [s.l.]: Univ. of Pennsylvania, 1969.

    Google Scholar 

  6. King M. A, Schwinger R. B, Doherty P. W, Penney B. C. Two-dimensional filtering of SPECT images using the Metz and Wiener filters. J Nucl Med 1984;25:1234–40.

    PubMed  CAS  Google Scholar 

  7. King M. A, Schwinger R. B, Penney B. C. Variation of the count-dependent Metz filter with imaging system modulation transfer function. Med Phys 1986;13:139–49.

    Article  PubMed  CAS  Google Scholar 

  8. Gilland D. R, Tsui B. M, McCartney W. H, Perry J. R, Berg J. Determination of the optimum filter function for SPECT imaging. J Nucl Med 1988;29:643–50.

    PubMed  CAS  Google Scholar 

  9. Tamaki N, Mukai T, Ishii Y, Fujita T, Yamamoto K, Minato K, et al. Comparative study of thallium emission myocardial tomography with 180 degrees and 360 degrees data collection. J Nucl Med 1982;23:661–6.

    CAS  Google Scholar 

  10. Maublant J. C, Peycelon P, Kwiatkowski F, Lusson J. R, Standke R. H, Veyre A. Comparison between 180 degrees and 360 degrees data collection in technetium-99m MIBI SPECT of the myocardium. J Nucl Med 1989;30:295–300.

    PubMed  CAS  Google Scholar 

  11. Go R. T, MacIntyre W. J, Houser T. S, Pantoja M, O’Donnel J. K, Feiglin D. H, et al. Clinical evaluation of 360 degrees and 180 degrees data sampling techniques for transaxial SPECT thallium-201 myocardial perfusion imaging. J Nucl Med 1985;26:695–706.

    PubMed  CAS  Google Scholar 

  12. Knesaurek K. Comparison of 360 degrees and 180 degrees data eolleetion in SPECT imaging. Phys Med Biol 1987;32:1445–56.

    Article  PubMed  CAS  Google Scholar 

  13. Tretiak O. J, Metz C. E. The exponential Radon transform. SIAM J Appl Math 1980;39:341–54.

    Article  Google Scholar 

  14. Gullberg G. T, Budinger T. F. The use of filtering methods to compensate for constant attenuation in single-photon emission computed tomography. IEEE Trans Biomed Eng 1981;28:142–57.

    Article  PubMed  CAS  Google Scholar 

  15. Kay D. B, Keyes J. W. First order eorreetions for absorption and resolution compensation in radionuclide Fourier tomography (abstract). J Nucl Med 1975;16:540–1.

    Google Scholar 

  16. Budinger T. F, Gullberg G. T, Huesman R. H. Emission computer tomography. In: Herman G. T, editor. Image reconstruction from projeetions: implementation and applieations. Berlin: Springer 1979:147–246.

    Chapter  Google Scholar 

  17. Chang L T. A method for attenuation eorreetion in radionuclide eomputed tomography, IEEE Trans Nucl Sci 1978;25:638–42.

    Article  Google Scholar 

  18. Manglos S. H, Jaszezak R. J, Floyd C. E, Hahn L. J, Greer K. L, Coleman R. E. Nonisotropie attenuation in SPECT: phantom tests of quantitative effects and compensation techniques. J Nucl Med 1987;28:1584–91.

    PubMed  CAS  Google Scholar 

  19. Manglos S. H, Jaszezak R. J, Floyd C. E. Weighted backprojeetion implemented with a nonuniform attenuation map for improved SPECT quantitation. IEEE Trans Nucl Sci 1988;NS-35:625–8.

    Article  Google Scholar 

  20. Tsui B. M, HU H. B, Gilland D. R, Gullberg G. T. Implementation of simultaneous attenuation and deteetor response correction in SPECT. IEEE Trans Nucl Sci 1988;35:778–83.

    Article  CAS  Google Scholar 

  21. Tsui B. M, Gullberg G. T, Edgerton E. R, Ballard J. G, Perry J. R, McCartney W. H, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med 1989;30:497–507.

    PubMed  CAS  Google Scholar 

  22. Shepp L. A, Vardi Y. Maximum likelihood reeonstruetion for emission tomography. IEEE Trans Med Imaging 1982;MI-l:113–22.

    Article  Google Scholar 

  23. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–16.

    PubMed  CAS  Google Scholar 

  24. Levitan E, Herman G. T. A maximum a posteriori prob ability expectation maximization algorithm for image reconstruetion in emission tomography. IEEE Trans Med Imaging 1987;6:185–92.

    Article  PubMed  CAS  Google Scholar 

  25. Gullberg G. T, Huesman R. H, Malko J. A, Pelc N. J, Budinger T. F. An attenuated projector-backprojector for iterative SPECT reconstruction. Phys Med Biol 1985;30:799–816.

    Article  PubMed  CAS  Google Scholar 

  26. Tsui B. M, Zhao X. D, Frey E. C, Gullberg G. T. Comparison between ML-EM and WLS-CG algorithms for SPECT image reeonstruetion. IEEE Trans Nucl Sci. In press.

    Google Scholar 

  27. Gilland D. R. An investigation of maximum likelihood-EM image reconstruction in single photon emission computed tomography. [dissertation]. Chapel Hili: Univ. of North Carolina, 1989.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tsui, B.M.W. (1992). Reconstruction and filtering methods for quantitative cardiac SPECT imaging. In: Reiber, J.H.C., Van Der Wall, E.E. (eds) Cardiovascular Nuclear Medicine and MRI. Developments in Cardiovascular Medicine, vol 128. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2666-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2666-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5179-8

  • Online ISBN: 978-94-011-2666-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics