Skip to main content

Cardiovascular imaging in the nineties

  • Chapter
Cardiovascular Nuclear Medicine and MRI

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 128))

  • 74 Accesses

Summary

The boundaries for the future of cardiac imaging and image processing have been enumerated with great ambitions, but the attainment of those goals will require a unique approach to further investigations. To reach these goals, the future approach should focus on the biological and technical problems that remain to be solved before complete characterization of cardiac structure, function, perfusion, and metabolism by imaging techniques will become a reality. These goals can only be met by interdisciplinary teams of investigators, representing expertise in the divergent areas of physics, electrical and computer engineering, physiology, biochemistry, computer science and the dinicians in cardiology, radiology, and nudear medicine. The successful attainment of our shared objectives depends on a dose interaction among the several academic disciplines cited, induding collaboration with industrial research and development laboratories. The achievements of coordinate cardiac imaging research to date are extraordinary and suggest that the application of quantitative analytical techniques to cardiovascular images will continue to yield impressive and meaningful results which should increase our knowledge of the cardiovascular system and the subjective utility for our patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. White C. W, Wright C. B., Doty D. B., et al. Does visual interpretation of the coronary arteriogram prediet the physiologic importance of a coronary stenosis? N Engl J Med 1984;310:819–24.

    Article  PubMed  CAS  Google Scholar 

  2. Alpert J. S., Braunwald E. Acute myocardial infaretion: pathological, pathophysiological, and clinical manifestations. In: Braunwald E., editor. Heart disease: a textbook of eardiovaseular medicine. 2nd ed. Philadelphia: Saunders, 1984:1262–1300.

    Google Scholar 

  3. Forrester J. S., Diamond G., Chatterjee K., Swan H. J., Medical therapy of acute myocardial infarction by application of hemodynamic subsets (first of two parts). N Engl J Med 1976;295: 1356–62.

    Article  PubMed  CAS  Google Scholar 

  4. Forrester J. S., Diamond G., Chatterjee K., Swan H. J., Medical therapy of acute myocardial infarction by application of hemodynamic subsets (second of two parts). N Engl J Med 1976;295:1404–13.

    Article  PubMed  CAS  Google Scholar 

  5. Russel R.O. Jr, Mantle J. A., Rogers W. J., Rackley C. E., Current status of hemodynamic monitoring: indications, diagnosis, complications. In: Rackley C.E., editor. Critical care cardiology. FA Davis 1981:1–13.

    Google Scholar 

  6. Stack R. S., Phillips H. R. 3d, Grierson D. S., et al. Functional improvement of jeopardized myocardium following intracoronary streptokinase infusion in acute myocardial infarction. J Clin Invest 1983;72:84–95

    Article  PubMed  CAS  Google Scholar 

  7. Sheehan F. H., Bolson E. L., Dodge H. T., Mathey D. G., Schofer J., Woo H. W., Advantages and applications of the centerline method for characterizing regional ventricular function. Circulation 1986;74:293–305.

    Article  PubMed  CAS  Google Scholar 

  8. Williams D. O., Scherlag B. J., Hope R. R., EI-Sheriff N., Lazzara R., The pathophysiology of malignant ventricular arrhythmias during acute myocardial ischemia. Circulation 1974;50:1163–72.

    Article  PubMed  CAS  Google Scholar 

  9. Jones-Collins B. A., Patterson R. E., Quantitative measurement of electrical instability as a function of myocardial infarct size in the dogs. Am J Cardiol 1981;48:858–63.

    Article  PubMed  CAS  Google Scholar 

  10. Kirk E. S., Jennings R. B., Pathophysiology of myocardial ischemia. In: Hurst J. W., editor. The heart, arteries and veins. 5th ed. New York: McGraw-Hill 1982:979–95.

    Google Scholar 

  11. Hirzel H. O., Sonnenblick E. H., Kirk E. S., Absence of a lateral border zone of intermediate creatine phosphokinase depletion surrounding a central infarct 24 hr after acute coronary occlusion in the dog. Circ Res 1977;41:673–83.

    Article  PubMed  CAS  Google Scholar 

  12. Roberts R., Sobel B. E., Creatine kinase isoenzymes in the assessment of heart disease. Am Heart J 1978;95:521–8.

    Article  PubMed  CAS  Google Scholar 

  13. Savage R. M., Wagner G. S., Ideker R. E., Podolsky S. A., Hackel D. B. Correlation ofpostmortem anatomic findings with electrocardiographic changes in patients with myocardial infarction: retrospective study of patients with typical anterior and posterior infarcts. Circulation 1977;55:279–85.

    Article  PubMed  CAS  Google Scholar 

  14. Holland R. P., Brooks H., TQ-ST segment mapping: critical review and analysis of current concepts. Am J Cardiol 1977;40:110–29.

    Article  PubMed  CAS  Google Scholar 

  15. Risk stratification and survival after myocardial infarction. N Engl J Med 1983;309:331–6.

    Google Scholar 

  16. Willerson J. T., Parkey R. W., Lewis S. E., Bonte F. J., Buja L. M., Hot-spot imaging for patientswith acute myocardial infarction. J Cardiovasc Med 1982;7:291.

    Google Scholar 

  17. Khaw B. A., Beller G. A., Haber E. Experimental myocardial infarct imaging following intravenous administration of iodine-131 labeled antibody (Fab')2 fragments specific for cardiac myosin. Circulation 1978;57:743–50.

    Article  PubMed  CAS  Google Scholar 

  18. Van Vlies B, van Royen E. A., Visser C. A., et al. Frequency of myocardial Indium-111 antimyosin uptake after uncomplicated coronary artery bypass grafting. Am J Cardiol 1990;66:1191–5.

    Article  PubMed  Google Scholar 

  19. Jain D., Crawley J. C., Lahiri A., Raftery E. B., Indium-111-antimyosin images compared with triphenyl tetrazolium chloride staining in a patient six days after myocardial infarction. J Nucl Med 1990;31:231–3.

    PubMed  CAS  Google Scholar 

  20. Johnson L. L., Seldin D. W., Keller A. M., Dual isotope thallium and indium antimyosin SPECT imaging to identify acute infarct patients at further ischemic risk. Circulation 1990;81:37–45.

    Article  PubMed  CAS  Google Scholar 

  21. Silverman K. J., Becker L. C., Bulkley B. H., et al. Value of early thallium-201 scintigraphy for predicting mortality in patients with acute myocardial infarction. Circulation 1980;61:996–1003.

    Article  PubMed  CAS  Google Scholar 

  22. Pellikka P. A., Behrenbeck T., Verani M. S., Mahmarian J. J., Wackers F. J., Gibbons R. J., Serial changes in myocardial perfusion using tomographic technetium-99m hexakis-2-methoxy 2-methylpropyl-isonitrile imaging following reperfusion therapy of myocardial infarction. J Nucl Med 1990;31:1269–75.

    PubMed  CAS  Google Scholar 

  23. Eichstaedt H., Felix R., Steiner-Peleny G., Langer M. MR-Diagnostik des Myokardinfarktes mit Gadolinium-DTPA. Zentralbl Radiol 1985;129:960–6.

    Google Scholar 

  24. Eichstaedt H., Felix R., Langer M., Peleny G., Heart-imaging with magnetic resonance tomography using the paramagnetic contrast medium Gadolinium-DTPA. In: Lemke H. U., Rhodes M. L., Jaffee C. C., Felix R., editors. Computer assisted radiology. Berlin: Springer, 1985:56–78.

    Google Scholar 

  25. Eichstaedt H. W., Felix R., Dougherty F. C., Langer M., Rutsch W., Schmutzler H. Magnetic resonance imaging (MRI) in different stages of myocardial infarction using the contrast agent gadolinium-DTPA. Clin Cardiol 1986;9:527–35.

    Article  PubMed  CAS  Google Scholar 

  26. de Roos A., Matheijssen N. A., Doornbos J., van Dijkman P. R. M., van Voorthuisen A. E., van der Wall E. E., Myocardial infarct size after reperfusion therapy: Assessment with GdDTPA-enhanced MR Imaging. Radiology 1990;176:517–21.

    PubMed  Google Scholar 

  27. Van der Wall E. E., van Dijkman, P. R., de Roos A., et al. Diagnostic significance of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in thrombolytic treatment for acute myocardial infarction: its potential in assessing reperfusion. Br Heart J 1990;63:12–17.

    Article  PubMed  Google Scholar 

  28. Norris R. M., Brandt P. W., Caughey D. E., Lee A. J., Scott P. J., A new coronary prognostic index. Lancet 1969;1:274–8.

    Article  PubMed  CAS  Google Scholar 

  29. Rackley C. E. Quantitative evaluation of left ventricular function by radiographic techniques. Circulation 1976;54:862–79.

    Article  PubMed  CAS  Google Scholar 

  30. Braunwald E., Kloner R. A., The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146–9.

    Article  PubMed  CAS  Google Scholar 

  31. Green M. V., Bacharach S. L., Functional imaging of the heart: methods, limitations andexamples from gated blood pool scintigraphy. Prog Cardiovasc Dis 1986;28:319–48.

    Article  PubMed  CAS  Google Scholar 

  32. Califf R. M., Burks J. M., Behar V. S., Margolis J. R., Wagner G. S., Relationship among ventricular arrhythmias, coronary artery disease, and angiographic and electrocardiographic indicators of myocardial fibrosis. Circulation 1978;57:725–32.

    Article  PubMed  CAS  Google Scholar 

  33. Epstein S. E., Palmeri S. T., Patterson R. E., Current concepts: evaluation of patients after acute myocardial infarction: indications for cardiac catheterization and surgical intervention. N Engl J Med 1982;307:1487–92.

    Article  PubMed  CAS  Google Scholar 

  34. Lee J. T., Ideker R. E., Reimer K. A., Myocardial infarct size and location in relation to the coronary vascular bed at risk in man. Circulation 1981;64:526–34.

    Article  PubMed  CAS  Google Scholar 

  35. Mimbs J. W., Bauwens D., Cohen R. D., O’Donnell M., Miller J. G., Sobel B. E., Effects of myocardial ischemia on quantitative ultrasonic backscatter and identification of responsible determinants. Circ Res 1981;49:89–96.

    Article  PubMed  CAS  Google Scholar 

  36. McPherson D. D., Aylward P. E., Knosp B. M., et al. Ultrasound characterization of acute myocardial ischemia by polar texture analysis (abstract). Circulation 1984;70 (suppl 2):II396.

    Google Scholar 

  37. Mimbs JW, Yuhas DE, Miller JG, Weiss AN, Sobel BE. Detection of myocardial infarction in vitro based on altered attenuation of ultrasound. Circ Res 1977;41:192-8.

    Google Scholar 

  38. Skorton D. J., Collins S. M., Nichols J., Pandian N. G., Bean J. A., Kerber R. E. Quantitative texture analysis in two-dimensional echocardiography: application to the diagnosis of experimental myocardial contusion. Circulation 1983;68:217–23.

    Article  PubMed  CAS  Google Scholar 

  39. Skorton D. J., Melton H. E. Jr, Pandian N. G., et al. Detection of acute myocardial infarction in closed-chest dogs by analysis of regional two-dimensional echocardiographic gray-level distributions. Circ Res 1983;52:36–44.

    Article  PubMed  CAS  Google Scholar 

  40. Higgins C. B., Herfkens R., Lipton M. J., et al. Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am J Cardiol 1983;52:184–8.

    Article  PubMed  CAS  Google Scholar 

  41. Higgins C. B., Lanzer P., Stark D., et al. Imaging by nuclear magnetic resonance in patients with chronic ischemic heart disease. Circulation 1984;69:523–31.

    Article  PubMed  CAS  Google Scholar 

  42. Doornbos J., Verwey H., Essed C. E., Balk A. H., de Roos A. MR imaging in assessment of cardiac transplant rejection in humans. J Comput Assist Tomogr 1990;14:77–81.

    Article  PubMed  CAS  Google Scholar 

  43. Prigent F., Maddahi J., Sato Y., et al. Quantification of myocardial infarct size in the dog using single photon emission computerized tomography: slice-by-slice comparison of T1-201 tomograms and pathology (abstract). Circulation 1984;70 (suppl 2):II450.

    Google Scholar 

  44. Corbett J. R., Lewis S. E., Wolfe C. L., et al. Measurement of myocardial infarct size by technetium pyrophosphate single-photon tomography. Am J Cardiol 1984;54:1231–6.

    Article  PubMed  CAS  Google Scholar 

  45. Yazaki Y., Isobe M., Tsuchimochi H., Takaku F., Nishikawa J., Iio M., A new method of myocardial infarct sizing by single photon emission tomography using labeled monoclonal antibody specific for ventricular myosin heavy chain (abstract). Circulation 1984;70 (suppl 2):II9.

    Google Scholar 

  46. Goldstein R. A., Hicks C. H., Kuhn J. L., et al. Myocardial infarct imaging with rubidium-82 and PET in man (abstract). Circulation 1984;70 (suppl 2):II9.

    Google Scholar 

  47. Muehllehner G., Colsher J. G., Lewitt R. M., A hexagonal bar positron camera: problems andsolutions. IEEE Trans Nucl Sci 1983;30:652–60.

    Article  Google Scholar 

  48. Berger H. J., Eisner R., DePuey E. G., Patterson R. New vistas in cardiovascular nuclear medicine. J Nucl Med 1984;25:1254–8.

    PubMed  CAS  Google Scholar 

  49. Rumberger J. A., Feiring A. J., Lipton M. J., Higgins C. B., Marcus M. L., Measurement of myocardial perfusion by ultrafast CT (abstract). J Am Coll Cardiol 1985;5:500.

    Google Scholar 

  50. Pandian N. G., Koyanagi S, Skorton D. J., et al. Relations between 2-dimensional echocardiographic wall thickening abnormalities, myocardial infarct size and coronary risk area in normal and hypertrophied myocardium in dogs. Am J Cardiol 1983;52:1318–25.

    Article  PubMed  CAS  Google Scholar 

  51. Johnson M. R., Feiring A. J., Kioschos J. M., Bruch P. M., Kirchner P. T., White C. W. Risk area determination in patients with acute myocardial infarction (abstract). Circulation 1984;70 (suppl 2):II275.

    Google Scholar 

  52. Armstrong W. F., Mueller T. M., Kinney E. L., Tickner E. G., Dillon J. C., Feigenbaum H. Assessment of myocardial perfusion abnormalities with contrast-enhanced two-dimensional echocardiography. Circulation 1982;66:166–73.

    Article  PubMed  CAS  Google Scholar 

  53. Eichstaedt H., Schumacher M., Feine U., Kochsiek K. Rechnerunterstützte 201Tl-Myokardszintigraphie in der Routinediagnostik der koronaren Herzerkrankung. Nuklearmedizin 1978;17:233–7.

    Google Scholar 

  54. Niemeyer M. G., Laarman G. J., van der Wall E. E., et al. Is quantitative analysis superior to visual analysis of planar thallium 201 myocardial exercise scintigraphy in the evaluation of coronary artery disease? Analysis of a prospective clinical study. Eur J Nucl Med 1990;16:697–704.

    Article  PubMed  CAS  Google Scholar 

  55. Fintel D. J., Frank T. L., DiPaula A. F., McGaughey M. M., Becker L. C. Quantitation of regional myocardial thallium uptake by single photon emission computed tomography (abstract). Circulation 1984;70 (suppl 2):II9.

    Google Scholar 

  56. Fintel D. J., Links J. M., Frank T. L., Becker L. C. Comparison of planar and tomographic thallium imaging for the detection of coronary artery disease (abstract). Circulation 1984;70 (suppl 2):II450.

    Google Scholar 

  57. Maddahi J, Prigent F, Staniloff H, et al. A new probabilistic approach to the quantitativeinterpretation of Tl-201 rotational myocardial tomograms for assessment of coronary artery disease (CAD) (abstract). Circulation 1984;70 (suppl 2):II450.

    Google Scholar 

  58. Klein J. L., Garcia E. V., DePuey G, et al. Reversibility bull’s-eye: a new polar bull’s-eyemap to quantify reversibility of stress-induced SPECT thallium-201 myocardial perfusiondefects. J Nucl Med 1990;31:1240–6.

    PubMed  CAS  Google Scholar 

  59. Iskandrian A. S., Heo J., Kong B, Lyons E. Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients. J Am Coll Cardiol 1989;14:1477–86.

    Article  PubMed  CAS  Google Scholar 

  60. Hendel R. C., McSherry B, Karimeddini M, Leppo J. A. Diagnostic value of a new myocardial perfusion agent, teboroxime (SQ 30,217), utilizing a rapid planar imaging protocol: preliminary results. J Am Coll Cardiol 1990;16:855–61.

    Article  PubMed  CAS  Google Scholar 

  61. Koster K., Wackers F. J., Mattera J. A., Fetterman R. C. Quantitative analysis of planar technetium-99m-sestamibi myocardial perfusion images using modified background subtraction. J Nucl Med 1990;31:1400–8.

    PubMed  CAS  Google Scholar 

  62. Kaufman L, Crooks L, Sheldon P, Hricak H, Herfkens R, Bank W. The potential impact of nuclear magnetic resonance imaging on cardiovascular diagnosis. Circulation 1983;67:251–7.

    CAS  Google Scholar 

  63. Ordidge R. J., Mansfield P., Doyle M., Coupland R. E., Real time movie images by NMR. Br J Radiol 1982;55:729–33.

    Article  PubMed  CAS  Google Scholar 

  64. Underwood S. R. Cine magnetic resonance imaging and flow measurements in the cardiovascular system. Br Med Bull 1989;45:948–67.

    PubMed  CAS  Google Scholar 

  65. Pettigrew R. I. Dynamic cardiac MR imaging. Radiol Clin North Am 1989;27:1183–203.

    PubMed  CAS  Google Scholar 

  66. Vogel R, LeFree M, Bates E, et al. Application of digital techniques to selective coronary arteriography: use of myocardial contrast appearance time to measure coronary flow reserve. Am Heart J 1984;107:153–64.

    Article  PubMed  CAS  Google Scholar 

  67. Cloninger K. G., DePuey E. G., Garcia E. V, et al. Redistribution abnormalities in exercise thallium images: unresolved ischemia vs infarction? (abstract) J Nucl Med 1986;27:997.

    Google Scholar 

  68. Tillisch J, Marshall R, Schelbert H, Huang S. C., Phelps M. Reversibility of wall motion abnormalities: Preoperative determination using positron tomography, 18-fluorodeoxyglucose and 13-NH3 (abstract). Circulation 1983;68 (suppl 3):III387.

    Google Scholar 

  69. Dilsizian V, Rocco T. P., Freedman N. M., Leon M. B, Bonow R. O. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–6.

    Article  PubMed  CAS  Google Scholar 

  70. Yang L. D, Berman D. S., Kiat H, et al. The frequency of late reversibility in SPECT thallium-201 stress-redistribution studies. J Am Coll Cardiol 1990;15:334–40.

    Article  PubMed  CAS  Google Scholar 

  71. Dyke S. H., Cohn P. F, Gorlin R., Sonnenblick E. H. Detection of residual myocardial function in coronary artery disease using post-extra systolic potentiation. Circulation 1974;50:694–9.

    Article  PubMed  CAS  Google Scholar 

  72. Horn H. R, Teichholz L. E., Cohn P. F, Herman M. V, Gorlin R., Augmentation of left ventricular contraction pattern in coronary artery disease by an inotropic catecholamine. The epinephrine ventriculogram. Circulation 1974;49:1063–71.

    Article  PubMed  CAS  Google Scholar 

  73. Patterson R. E, Jones-Collins B. A, Aamodt R. Impaired collateral blood flow reserve early after nontransmural myocardial infarction in conscious dogs. Am J Cardiol 1982;50:1133–40.

    CAS  Google Scholar 

  74. Tennant R, Wiggers C. J. Effect of coronary occlusion on myocardial contraction. Am J Physiol 1935;112:351–61.

    Google Scholar 

  75. Herman M. V, Heinle R. A, Klein M. D, Gorlin R. Localized disorders in myocardial contraction. Asynergy and its role in congestive heart failure. N Engl J Med 1967;227:222–32.

    Article  Google Scholar 

  76. Herman M. V, Gorlin R. Implications of left ventricular asynergy. Am J Cardiol 1969;23:538–47.

    Article  PubMed  CAS  Google Scholar 

  77. Katz A. M. Effects of ischemia on the contractile processes of heart muscLe. Am J Cardiol 1973;32:456–60.

    Article  PubMed  CAS  Google Scholar 

  78. Auffermann W, Watters T, Wu S, Parmley W. W, Higgins C. B, Wikman-Coffelt J. The descending limb of the Frank-Starling curve is due to energy depletion and excess Ca2+ entry (abstract). J Am Coll Cardiol 1988;11 (suppl A):72A.

    Google Scholar 

  79. Carmeliet E. Myocardial ischemia: reversible and irreversible changes. Circulation 1984;70:149–51.

    Article  PubMed  CAS  Google Scholar 

  80. Reiber J. H. Review of methods for computer analysis of global and regionalleft ventricular function from equilibrium gated blood pool scintigrams. In: Simoons M. L, Reiber J. H. C., editors. Nuclear imaging in c1inical cardiology. Boston: Nijhoff, 1984:173–217.

    Google Scholar 

  81. Eichstaedt H, Langer M, Felix R. Die digitale Subtraktions-Ventrikulographie bei der Bestimmung globaler und regionaler linksventrikulärer Parameter im Vergleich zur Katheter-Laevokardiographie. Radiologie 1984;24:277–85.

    Google Scholar 

  82. Borer J. S, Bacharach S. L, Green M. V. Real-time radionuclide cineangiography in the noninvasive evaluation of global and regionalleft ventricular function at rest and during exercise in patients with coronary artery disease. N Engl J Med 1977;296:839–44.

    Article  PubMed  CAS  Google Scholar 

  83. Bonow R. O, Bacharach S. L. Left ventricular diastolic function: evaluation by radionuclide ventriculography. In: Pohost G. M, Higgins C. B, Morganroth J., editors: New concepts in cardiac imaging. Chicago: Year Book Medical Publishers, 1987:107–37.

    Google Scholar 

  84. Gaasch W. H, Blaustein A. S, Andrias C. W, Donahue R. P, Avitall B. Myocardial relaxation. 11. Hemodynamic determinants of rate of the left ventricular isovolumic pressure decline. Am J Physiol 1980;239:HI–6.

    Google Scholar 

  85. Mirsky I. Assessment of diastolic function: suggested methods and future consideration. Circulation 1984;69:836–41.

    Article  PubMed  CAS  Google Scholar 

  86. Green M. V, Jones-Collins B. A, Bacharach S. L, Findley S. L, Patterson R. E, Larson S. M. Scintigraphic quantitation of asynchronous myocardial motion during the left ventricular isovolumic relaxation period: A study in the dog during acute ischemia. J Am Coll Cardiol 1984;4:72–9.

    CAS  Google Scholar 

  87. Fishman A. P. Pulmonary edema. The water-exchanging function of the lung. Circulation 1972;46:390–408.

    Article  PubMed  CAS  Google Scholar 

  88. Boucher C. A, Zir L. M, Beller G. A, et al. Increased lung uptake of thallium-201 during exercise myocardial imaging: clinical hemodynamic and angiographic implications in patients with coronary artery disease. Am J Cardiol 1980;46:189–96.

    Article  PubMed  CAS  Google Scholar 

  89. Okada R. D, Pohost G. M, Kirshenbaum H. D, et al. Radionuclide-determined change in pulmonary blood volume with exercise. Improved sensitivity of multigated blood-pool scanning in detecting coronary-artery disease. N Engl J Med 1979;301:569–76.

    Article  PubMed  CAS  Google Scholar 

  90. Auffermann W., Chew W. M, Tavares N. J, et al. 31P-magnetic resonance spectroscopy and cine 1H magnetic resonance imaging of dilated cardiomyopathy in humans. J Am Coll Cardiol 1989;13 (suppl A):199A.

    Google Scholar 

  91. Weiner J. M, Apstein C. S, Arthur J. H, Pirzada F. A, Hood W. B Jr. Persistence of myocardial injury following brief periods of coronary occlusion. Cardiovasc Res 1976;10:678–86.

    Article  PubMed  CAS  Google Scholar 

  92. Swain J. L, Sabina R. L, McHale P. A, Greenfield J. C. Jr, Holmes E. W. Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol 1982;242:H818–26.

    PubMed  CAS  Google Scholar 

  93. Theroux P., Ross J. Jr, Franklin D, Kempen W. S, Sasyama S. Regional myocardial function in the conscious dog during acute coronary occlusion and responses to morphine, proprano-101, nitroglycerin and lidocaine. Circulation 1976;53:302–14.

    Article  PubMed  CAS  Google Scholar 

  94. Neely J. R, Morgan H. E. Relationship between carbohydrate and lipid metabolism 2nd energy balance of heartmuscle. Annu Rev Physiol 1974;36:413–59.

    Article  PubMed  CAS  Google Scholar 

  95. Van der Wall E. E. Dynamic myocardial scintigraphy with 123-I-labeled free fatty acids[dissertation]. Amsterdam: Rodopi, 1981.

    Google Scholar 

  96. Gould K. L, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 1974;34:48–55.

    Article  PubMed  CAS  Google Scholar 

  97. Gorlin R. Coronary artery disease. Philadelphia: Saunders, 1976.

    Google Scholar 

  98. Schwartz J. N, Kong Y, Hackell D. B, Bartel A. G. Comparison of angiographic and post mortem findings in patients with coronary artery disease. Am J Cardiol 1975;36:174–8.

    Article  PubMed  CAS  Google Scholar 

  99. Brown B. G, Bolson E, Frimer M, Dodge H. T. Quantitative coronary arteriography: estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 1977;55:329–37.

    Article  PubMed  CAS  Google Scholar 

  100. Rutishauser W, Bussmann W. D, Noseda G, Meier W, Wellauer J. Blood flow measurement through single coronary arteries by roentgen densitometry. 1. A comparison of flow measured by a radiologic technique applicable in the intact organism and by electromagneticflowmeter. Am J Roentgenol Radium Ther Nucl Med 1970;109:12–20.

    Article  PubMed  CAS  Google Scholar 

  101. Gould K. L, Schelbert H. R, Phelps M. E, Hoffman E. J. Noninvasive assessment of coronary stenosis by myocardial perfusion imaging during pharmacologic coronary vasodilation. V. Detection of 47 percent diameter coronary stenosis with intravenous nitrogen-13 ammonia and emission computed tomography in intact dogs. Am J Cardiol 1979;43:200–8.

    Article  PubMed  CAS  Google Scholar 

  102. Ritchie J. L, Trobaugh G. B, Hamilton G. W, et al. Myocardial imaging with thallium-201 at rest and during exercise. Comparison with coronary arteriography and resting and stress electrocardiography. Circulation 1977;56:66–71.

    Article  PubMed  CAS  Google Scholar 

  103. Shonkoff D; Eisner R. L, Gober A, et al. What quantitative criteria should be used to read defects on the SPECf Tl-201 bullseye display in men?: ROC analysis (abstract). J Nucl Med 1987;28:674–5.

    Google Scholar 

  104. Cedarholm J. C, Martin S. E, Greene R, et al. Can SPECf Tl-201 determine the ‘physiological significance’ of a coronary stenosis? (abstract). J Nucl Med 1987;28:666–7.

    Google Scholar 

  105. Maddahi J, van Train K., Prigent F, et al. Quantitative single photon emission computedthallium-201 tomography for detection and localization of coronary artery disease: optimization and prospective validation of a new technique. J Am Coll Cardiol 1989;14:1689–99.

    Article  PubMed  CAS  Google Scholar 

  106. Van Train K. F, Maddahi J, Berman D. S, et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: A multicenter trial. J Nucl Med 1990;31:1168–79.

    PubMed  Google Scholar 

  107. Gerson M. C. Test accuracy, test selection, and test result interpretation in chronic coronary artery disease. In: Gerson M. C., editor. Cardiac nuclear medicine. New York: McGrawHill, 1987;309–47.

    Google Scholar 

  108. Gregg D. E, Patterson RE. Functional importance of the coronary collaterals. N Engl J Med 1980;303:1404–6.

    Article  PubMed  CAS  Google Scholar 

  109. Schaper W. The collateral circulation of the heart. Amsterdam: North-Holland, 19711971.

    Google Scholar 

  110. Fedor J. M, Rembert J. C, McIntosh D. M, Greenfield J. C Jr. Effects of exercise-and pacinginduced tachycardia on coronary collateral flow in the awake dog. Circ Res 1980;46:214–20.

    Article  PubMed  CAS  Google Scholar 

  111. Eichstaedt H, Felix R. Survey of techniques for measuring myocardial microperfusion. In: Heuck H. W, editor. Radiological functional analysis of the vascular system: contrast media, methods, results. Berlin: Springer, 1983;150–62.

    Chapter  Google Scholar 

  112. Eng C, Patterson RE, Horrowitz SF, et al. Coronary collateral function during exercise. Circulation 1982;66:309–16.

    Article  PubMed  CAS  Google Scholar 

  113. Smith S. C. Jr, Gorlin R, Herman M. V, Taylor W. J, Collins J. J. Jr. Myocardial blood flow in man: effects of coronary collateral circulation and coronary artery bypass surgery. J Clin Invest 1972;51:2556–65.

    Article  PubMed  Google Scholar 

  114. Farn W. M, McGregor M. Effect of coronary vasodilator drugs on retrograde flow in areas of chronic myocardial ischemia. Circ Res 1964;15:355–64.

    Article  Google Scholar 

  115. Becker L. C. Conditions for vasodilator-induced coronary steal in experimental myocardial ischemia. Circulation 1978;57:1103–10.

    Article  PubMed  CAS  Google Scholar 

  116. Patterson R. E, Kirk E. S. Coronary steal mechanisms in dogs with one-vessel occlusion and other arteries normal. Circulation 1983;67:1009–15.

    Article  PubMed  CAS  Google Scholar 

  117. Niemeyer M. G, van der Wall E. E, Leijtens J. P, Wever J, van der Pol J. M, Willekens F. G. Myocardial imaging using thallium 201 scintigraphy after dipyridamole infusion: a case story. Angiology 1989;40:1065–71.

    Article  PubMed  CAS  Google Scholar 

  118. Pennell D. J, Underwood S. R, Eil P. J. Symptomatic bradycardia complicating the use of intravenous dipyridamole for thallium-201 myocardial perfusion imaging. Int J Cardiol 1990;27:272–4.

    Article  PubMed  CAS  Google Scholar 

  119. Rogers E. W, Feigenbaum H, Weyman A. E, Godley R. W, Vakili S. T. Evaluation of left coronary artery anatomy in vitro by cross-sectional echocardiography. Circulation 1980;62:782–7.

    Article  PubMed  CAS  Google Scholar 

  120. Meaney T. F, Weinstein M. A, Buonocore E, et al. Digital subtraction angiography of the human cardiovascular system. Am J Roentgenol 1980;135:1153–60.

    Article  CAS  Google Scholar 

  121. Block M, Bahn R. C, Bove A. A, Harris L. D, Robb R. A, Ritman E. L. Measurement of coronary artery dimensions and blood fiow with the dynamic spatial reconstructor (DSR) (abstract). J Am Coll Cardiol 1983;1:690.

    Google Scholar 

  122. Whiting J. S, Nivatpumin T, Pfaff M, et al. Assessing the coronary circulation by digital angiography: bypass graft and myocardial perfusion imaging. In: Heintzen P. H, Brennecke R., editors. Digital imaging in cardiovascular radiology. Stuttgart: Thieme, 1983;205–11.

    Google Scholar 

  123. Brundage B. H, Lipton M. J, Herfkens R. J, et al. Detection of patent coronary bypass grafts by computed tomography. A preliminary report. Circulation 1980;61:826–31.

    Article  PubMed  CAS  Google Scholar 

  124. Eichstaedt H, Kraemer R, Dougherty F. C, Schneider R, Felix R, Schmutzler H. Darstellung von Hypertrophieregression unter chronischer Betablockade mit Hilfe der quantitativen Schichtszintigraphie. Z Kardiol 1983;72:69–74.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eichstaedt, H. (1992). Cardiovascular imaging in the nineties. In: Reiber, J.H.C., Van Der Wall, E.E. (eds) Cardiovascular Nuclear Medicine and MRI. Developments in Cardiovascular Medicine, vol 128. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2666-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2666-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5179-8

  • Online ISBN: 978-94-011-2666-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics