Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 356))

Abstract

This paper deals with three basic aspects of radial basis approximation. A typical example of such an approximation is the following. A function f in C (ℝn) is to be approximated by a linear combination of ‘easily computable’ functions g 1,…, g m For these functions the simplest choice in the radial basis context is to define g i by x ↦ ∥xx i2 for x ∈ ℝn and i = l,2,…,m. Here ∥ · ∥2 is the usual Euclidean norm on ℝn. These functions are certainly easily computable, but do they form a flexible approximating set? There are various ways of posing the question of flexibility, and we consider here three possible criteria by which the effectiveness of such approximations may be judged. These criteria are labelled density, interpolation and order of convergence in the exposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. de Boor and R.Q. Jia, Controlled approximation and a characterisation of the local approximation order, Proc. Amer. Math. Soc. 95 (1985), 547–553.

    Article  MathSciNet  MATH  Google Scholar 

  2. A.L. Brown, Uniform Approximation by Radial Basis Functions Appendix B in Radial Basis Functions in 1990-see [20].

    Google Scholar 

  3. M.D. Buhmann, Multivariable Interpolation using Radial Basis Functions, Ph.D. Dissertation, University of Cambridge, 1989.

    Google Scholar 

  4. E.W. Cheney and W.A. Light, Quasi-interpolation with base functions having noncompact Support, Constr. Approx. (to appear).

    Google Scholar 

  5. K.C. Chung and T.H. Yao, On lattices admitting unique Lagrange interpolation SIAM J. Num. Anal. 14 (1977), 735–741.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Duchon, Splines minimizing rotation-invariant seminorms in Sobolev spaces, in Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics 571, eds. W. Schempp and K. Zeller, Springer-Verlag (Berlin), 1977, 85–100.

    Chapter  Google Scholar 

  7. N. Dyn, Interpolation of scattered data by radial functions, in Topics in multivariate approximation, eds. C.K. Chui, L.L. Schumaker and F. Utreras, Academic Press (New York), 1987, 47–61.

    Google Scholar 

  8. N. Dyn, Interpolation and approximation by radial and related functions, in Approximation Theory VI: Volume 1, eds. C.K. Chui, L.L. Schumaker and J.D. Ward, Academic Press (New York), 1989, 211–234.

    Google Scholar 

  9. G. Fix and G. Strang, Fourier analysis of the finite element method in Ritz-Galerkin theory, Stud. Appl. Math., Vol. 48, 1969, 265–273.

    MathSciNet  MATH  Google Scholar 

  10. R. Franke, Scattered data interpolation: tests of some methods, Math. Comp., Vol. 38, 1982, 181–200.

    MathSciNet  MATH  Google Scholar 

  11. E.J. Halton and W.A. Light, On Local and Controlled Approximation Order, J. Approx. Th. (to appear).

    Google Scholar 

  12. R.L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., Vol. 76, 1971, 1905–1915.

    Article  Google Scholar 

  13. R.L. Hardy, Theory and applications of the multiquadric-biharmonic method, Comput. Math. Applic., Vol. 19, 1990, 163–208.

    Article  MATH  Google Scholar 

  14. I.R.H. Jackson, Radial Basis Function Methods for Multivariable Approximation, Ph.D. Dissertation, University of Cambridge, 1988.

    Google Scholar 

  15. R.-Q. Jia, A counterexample to a result concerning controlled approximation, Proc. Amer. Math. Soc. 97 (1986), 647–654.

    Article  MathSciNet  MATH  Google Scholar 

  16. R.-Q. Jia and J. Lei, Approximation by multiinteger translates of functions having non-compact support, Preprint, 1990.

    Google Scholar 

  17. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl., Vol. 4, 1988, 77–89.

    MathSciNet  MATH  Google Scholar 

  18. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions II, Math. Comp., Vol. 54, 1990, 211–230.

    Article  MathSciNet  MATH  Google Scholar 

  19. C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx., Vol. 2, 1986, 11–22.

    Article  MathSciNet  MATH  Google Scholar 

  20. M.J.D. Powell, Radial Basis Functions in 1990 in Advances in Numerical Analysis Volume II-Wavelets, Subdivision Algorithms and Radial Basis Functions Oxford University Press, 1991, 105–210.

    Google Scholar 

  21. W. Rudin, Functional Analysis 2nd ed., McGraw-Hill, 1973.

    Google Scholar 

  22. I.J. Schoenberg, Contributions to the problem of approximation of equi-distant data by analytic functions, A. B. Quart. Appl. Math. 4 (1946), 45–99 and 112-141.

    MathSciNet  Google Scholar 

  23. G. Strang and G. Fix, A Fourier analysis of the finite-element variational method in Constructive aspects of functional analysis, (G. Geymonat, ed.), C.I.M.E., (1973), 793–840.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Light, W.A. (1992). Some Aspects of Radial Basis Function Approximation. In: Singh, S.P. (eds) Approximation Theory, Spline Functions and Applications. NATO ASI Series, vol 356. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2634-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2634-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5164-4

  • Online ISBN: 978-94-011-2634-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics