Skip to main content

Wavelets, Splines and Divergence-Free Vector Functions

  • Chapter

Part of the NATO ASI Series book series (ASIC,volume 356)

Abstract

The aim of this lecture is to give a quick review on wavelets and spline theory, a very quick one since Professor Chui already gave you an extended lecture on spline wavelets [7]. To avoid too much redundancy with Chui’s talk, I will speak as few as possible about “classical wavelet theory” - namely the orthonormal wavelet bases provided by the multiresolution analysis scheme - and a little more about heretical wavelet theories, such as bi-orthogonal wavelets or the pre-wavelets of G. Battle. A very nice example of how to apply such heretical wavelets will be given in the study of divergence-free vector wavelets.

Keywords

  • Multiresolution Analysis
  • Riesz Basis
  • Unconditional Basis
  • Wavelet Theory
  • Spline Wavelet

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-011-2634-2_25
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-94-011-2634-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aldroubi, M. Eden & M. Unser A family of polynomial spline wavelet transform. Preprint, 1990.

    Google Scholar 

  2. P. Auscher Ondelettes fractales et applications. Thèse, Paris IX, 1989.

    Google Scholar 

  3. G. Battle A block spin construction of ondelettes. Part I: Lemarié functions. Comm. Math. Phys. 110 (1987), 601–615.

    MathSciNet  CrossRef  Google Scholar 

  4. G. Battle A block spin construction of ondelettes. Part II: The QFT connection. Comm. Math. Phys. 114 (1988), 93–102.

    MathSciNet  CrossRef  Google Scholar 

  5. G. Battle & P. Federbush A note on divergence-free vector wavelets. Preprint, T.A.M.U., 1991.

    Google Scholar 

  6. G. Battle & P. Federbush Divergence-free vector wavelets. Preprint, T.A.M. U., 1991.

    Google Scholar 

  7. C. K. Chui An introduction to spline wavelets. Lecture at the NATO-ASI on “Approximation theory, splines and applications”, Maratea, 1991.

    Google Scholar 

  8. C. K. Chui & J. Z. Wang On compactly supported spline wavelets and a duality principle. To appear in Trans. Amer. Math. Soc.

    Google Scholar 

  9. C. K. Chui & J. Z. Wang A cardinal spline approach to wavelets. To appear in Proc. Amer. Math. Soc.

    Google Scholar 

  10. A. Cohen, I. Daubechies & J. C. Feauveau Bi-orthogonal bases of compactly supported wavelets. Preprint, ATT & Bell Laboratories, 1990.

    Google Scholar 

  11. I. Daubechies Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 46 (1988), 909–996.

    MathSciNet  CrossRef  Google Scholar 

  12. I. Daubechies & J. Lagarias Two-scale difference equations. Preprint, ATT & Bell Laboratories, 1989.

    Google Scholar 

  13. J. C. Feauveau Analyse multi-resolution par ondelettes non orthogonales et banc de filtres numériques. Thèse, Paris XI, 1990.

    Google Scholar 

  14. S. Jaffard Construction et propriétés des bases d’ondelettes. Thèse, Ecole Polytechnique, 1989.

    Google Scholar 

  15. P. G. Lemarie Construction d’ondelettes splines. Unpublished, 1987.

    Google Scholar 

  16. P. G. Lemarie Ondelettes à localisation exponentielle. J. Math. Pures & Appl. 67 (1988), 227–236.

    MathSciNet  MATH  Google Scholar 

  17. P. G. Lemarie Théorie L 2 des surfaces splines. Unpublished 1987.

    Google Scholar 

  18. P. G. Lemarie Bases d’ondelettes sur les groupes de Lie stratifiés. Bull. Soc. Math. France 117 (1989), 211–232.

    MathSciNet  MATH  Google Scholar 

  19. P. G. Lemarie Some remarks on wavelets and interpolation theory. Preprint, Paris XI, 1990.

    Google Scholar 

  20. P. G. Lemarie Fonctions à support compact dans les analyses multi-résolutions. To appear in Revista Matematica Ibero-americana.

    Google Scholar 

  21. P. G. Lemarie-Rieusset Analyses multi-résolutions non orthogonales et ondelettes vecteurs à divergence nulle. Preprint, Paris XI, 1991.

    Google Scholar 

  22. P. G. Lemarie & Y. Meyer Ondelettes et bases hilbertiennes. Rev. Mat. Iberoamericana 2 (1986), 1–18.

    MathSciNet  CrossRef  Google Scholar 

  23. S. Mallat A theory for multi-resolution signal decomposition: the wavelet representation. IEEE PAMI 11 (1989), 674–693.

    MATH  CrossRef  Google Scholar 

  24. Y. Meyer Ondelettes et opérateurs, tome 1. Paris, Hermann, 1990.

    Google Scholar 

  25. I. J. Schoenberg Cardinal spline interpolation, CBMS-NSF. Series in Applied Math. ≠ 12, SIAM Publ., Philadelphia, 1973.

    Google Scholar 

  26. J. O. Stromberg A modified Franklin system and higher-order systems of ℝn as unconditional bases for Hardy spaces, in Conf. on Harmonic Anal. in honor of A. Zygmund, vol. 2, Waldsworth, 1983, 475–494.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lemarie-Rieusset, PG. (1992). Wavelets, Splines and Divergence-Free Vector Functions. In: Singh, S.P. (eds) Approximation Theory, Spline Functions and Applications. NATO ASI Series, vol 356. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2634-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2634-2_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5164-4

  • Online ISBN: 978-94-011-2634-2

  • eBook Packages: Springer Book Archive