Mass Spectrometry in the Biological Sciences: A Tutorial pp 213-227

Part of the NATO ASI Series book series (ASIC, volume 353) | Cite as

Plasma Desorption Mass Spectrometry: Principles and Applications to Protein Studies

  • Peter Roepstorff
Chapter

Abstract

The introduction of plasma desorption mass spectrometry (PDMS) has had a major impact on the practical application of mass spectrometry for analysis of biological macromolecules.The principles of the method and its application in protein studies are described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thorgerson,D.F., Skowronski, R.P., and Macfarlane R.D. (1974) ’New approach to the mass spectroscopy of non-volatile compounds’, Biochim. Biophys. Res. Commun., 60, 616–621.CrossRefGoogle Scholar
  2. 2.
    Macfarlane , R.D. and Thorgerson, D.F. (1976) ’Californium-252 plasma desorption mass spectrometry’, Science, 191, 920–925.CrossRefGoogle Scholar
  3. 3.
    Macfarlane, R.D., Uemura, D., Ueda, K., and Hirata, Y., (1980) ’252-Cf plasma desorption mass spectrometry of palytoxin’,J. Am. Chem. Soc., 102, 875–876.CrossRefGoogle Scholar
  4. 4.
    Håkansson, P., Kamensky, I., Sundqvist, B., Fohlman, J., Peterson, P., McNeal, CJ. and Macfarlane, R.D. (1982) ’127–1 plasma desorption mass spectrometry of insulin’, J. Am. Chem. Soc., 104, 2948–2949.CrossRefGoogle Scholar
  5. 5.
    Dell, A., and Morris, H.R. (1982) ’Fast atom bombardment - highfíeld magnetic mass spectrometry of 6000 dalton polypeptides’, Biochem. Biophys. Res. Commun., 106, 1456–1461.CrossRefGoogle Scholar
  6. 6.
    Barber, M., Bordoli, R.S., Elliot, G.J., Sedgwick, R.D., -Tyler, A.N. and Green, B.N. (1982) ’Fast atom bombardment mass spectrometry of bovine insulin and other large peptides’,j. Chem. Soc. Chem. Commun., 1982, 936–938.CrossRefGoogle Scholar
  7. 7.
    Kamensky, I., Håkansson, P., Kjellberg, J., Sundqvist, B., Fohlman, J., and Peterson, P. (1983) ’The observation of quasi molecular ions from a tiger snake venom component (MW 13309) using 252-Cf plasma desorption mass spectrometry’, FEBS Lettters, 155, 113–116.CrossRefGoogle Scholar
  8. 8.
    Sundqvist, B., Håkansson, B., Kamensky, I., Kjellberg, J., Sahlepour, M., Widdiyasekera,S., Fohlmann, J., Peterson, P., and Roepstorff, P. (1984) ’Californium252 plasma desorption time-of-flight mass spectrometry of proteins’, Biomed. Mass Spectrom., 11,242–257.CrossRefGoogle Scholar
  9. 9.
    Sundqvist, B., Roepstorff, P., Fohlmann,J., Hedin, A., Håkansson, P., Kamensky, I., Lindberg, M., Sahlepour M., and Säve, G. (1984) ’Molecular weight determination of proteins by californium plasma desorption mass spectrometry’, Science, 226, 696–698.CrossRefGoogle Scholar
  10. 10.
    Craig, A.G., Engström, Å., Bennich, H., and Kamensky I., (1987) ’Enhancement of molecular ion yields in plasma desorption mass spectrometry’, presented at the 35th. ASMS conference on Mass Spectrometry and Allied Topics, Denver Colorado, May 1987.Google Scholar
  11. 11.
    McNeal, C.J., Macfarlane, R.D., and Thurston, E.L., (1979) ’Thin film deposition by the electrospray method for californium-252 plasma desorption studies of involatile molecules’ Anal. Chem., 51, 2036–2039.CrossRefGoogle Scholar
  12. 12.
    Sundqvist, B., and Macfarlane, R.D. (1985) ’252-Cf plasma desorption mass spectrometry’ Mass Spectrom. Rev., 4, 421–460.CrossRefGoogle Scholar
  13. 13.
    Jonsson, G.P., Hedin, A.B., Håkansson, P.L., Sundqvist, B.U.R., Save, G.S., Nielsen, P.F., Roepstorff, P., Johansson, K.E., Kamensky, I., and Lindberg, M.S.L. (1986) Plasma desorption mass spectrometry of peptides and proteins absorbed on nitrocellulose’, Anal. Chem., 58, 1084–1087.CrossRefGoogle Scholar
  14. 14.
    Alai, M., Demirev, P., Fenselau. C., and Cotter, R.J. (1986) ’Glutathione as matrix for plasma desorption mass spectrometry of large peptides’, Anal. Chem., 58, 1303–1307.CrossRefGoogle Scholar
  15. 15.
    Wolf, B. and Macfarlane, R.D. (1991) ’Small molecules as substrates for adsorption/desorption in 252-Cf plasma desorption mass spectrometry’, J. Am. Soc. Mass Spectrom., 2, 29–32.CrossRefGoogle Scholar
  16. 16.
    Nielsen, P.F., Klarskov, K., Højrup, P., and Roepstorff, P. (1988) ’Optimization of sample preparation for plasma desorption mass spectrometry of peptides and proteins’, Biomed. Environ. Mass Spectrom., 17, 355–362.CrossRefGoogle Scholar
  17. 17.
    Nielsen, P.F. and Roepstorff, P. (1988)’ Sample-preparation dependent fragmentation in plasma desorption mass spectrometry of nisin’, Biomed. Environ. Mass Spectrom., 17, 137–141.CrossRefGoogle Scholar
  18. 18.
    Roepstorff, P., Talbo, G., Klarskov, K., and Højrup, P., (1990) ’Nitrocellulose, the interface between plasma desorption mass spectrometry and protein chemistry’, in A.L. Burlingame and J.A. McCloskey (eds.), Biological Mass Spectrometry, Elsevier, Amsterdam, pp. 25–48.Google Scholar
  19. 19.
    Jonsson, G., Hedin, A., Håkansson, P., Sundqvist, B.U.R., Bennich, H., and Roepstorff, P. (1989) ’Compensation for non-normal ejection of large molecular ions in plasma desorption mass spectrometry’, Rapid Commun. Mass Spectrom., 3, 190– 191.CrossRefGoogle Scholar
  20. 20.
    Karras, M., Ingendoh, A., Bahr, U. and Hillenkamp, F. (1989) ’Ultraviolet-laser desorption/ionization mass spectrometry of femtomolar amounts of large proteins’, Biomed. Environ. Mass Spectrom., 18, 841–843.CrossRefGoogle Scholar
  21. 21.
    Chait, B.T. and Field, F.H. (1982) ’252-Cf fission fragment ionization mass spectrometry of chlorophyll A’,J. Am. Chem. Soc.,104, 5519–5521.CrossRefGoogle Scholar
  22. 22.
    Tuszinski, W., Angermann, R., Hillmann, F. and Maier-Schwartz, K. (1990) ’PDMS in an institute of marine research, chlorophyll and other pigments in photoactive and buried marine biological mats’ in E.R. Hilf and W. Tuszynski (eds.), Mass spectrometry of large non-volatile molecules for marine organic chemistry, World Scientific, Singapore, pp. 131–146.CrossRefGoogle Scholar
  23. 23.
    Malhotra, N., Roepstorff, P., Hansen T.K., and Becher, J. (1990) ’Alkali metal ion complexation of crown ethers and related ligands studied by 252-californium plasma desorption mass spectrometry’J. Am. Chem. Soc, 112, 2709–3710.CrossRefGoogle Scholar
  24. 24.
    Allmaier, G., Schmid, E., and Roepstorff, P. (1990) ’Positive and negative ion 252-californium plasma desorption mass spectrometry of polar agrochemical metabolites’,Biomed. Environ. Mass Spectrom., 19, 75–79.CrossRefGoogle Scholar
  25. 25.
    Jørgensen, T., Becker, J., Hansen, T.K., Kristiansen, K. Roepstorff, P., Larsen, S., Nygaard, A. (1991) ’Structural characterization and properties of a new tetrathiafulvalene-based cage-molecule derived from an azacrown’, Advanced Materials, in press.Google Scholar
  26. 26.
    Scheller, H.V., Okkels, J.S., Høj, P.B., Svendsen I., Roepstorff, P., and Møller B.L. (1989) ’The primary structure of a 4.0 kDa photosystem I polypeptide encoded by the chloroplast psal gene’,J. Biol. Chem., 264, 18402–18406.Google Scholar
  27. 27.
    Scheller, H.V., Okkels, J.S., Roepstorff, P., Jepsen, L.B., and Møller, B.L., (1990) ’Characterization of a cDNA clone for the psaI gene from barley and plasma desorption mass spectrometry of the corresponding photosystem I polypeptide PSI-E’ in M. Baltscheffsky (ed.), Proceedings of the VIIIth International Congress on Photosysthesis, Stockholm august 1989, Klüwer Academic Publishers, Dortrecht, Holland, pp. 609–612.Google Scholar
  28. 28.
    Højrup, P., (1990) ’General protein mass analysis (GMPA), a convenient program in studies of proteins by mass spectrometry’ in A.Hedin, B.U.R. Sundqvist, and A. Benninghoven (eds.), Ion Formation from Organic Solids (IFOS V), J. Wiley and Sons, Chichester, England, pp. 61–66.Google Scholar
  29. 29.
    Feistner, G.J., Højrup, P., Evans, C.J., Barofsky, D.F., Faull, K.F,. and Roepstorff, P. (1989) ’Mass spectrometric charting of bovine posterior/interior pituitary peptides’, Proc. Natl. Acad. Sci. (USA), 86, 6013–6017.CrossRefGoogle Scholar
  30. 30.
    Feistner, G.J., Faull,K.F., Evans, C.J., Roepstorff, P., Højrup, P., and Barofsky, D.F. (1989) ’PDMS and FAB MS for the charting of neuropeptides’ in P. Longevialle (ed.), Advantages in Mass Spectrometry vol 11, J. Wiley and Sons, Chichester, England, pp. 1380–1381.Google Scholar
  31. 31.
    Jensen, O.N., Højrup, P., and Roepstorff, P. (1991) ’Plasma desorption mass spectrometry as a tool in characterization of abnormal proteins. Application to variant human hemoglobins.’ Anal. Biochem., in press.Google Scholar
  32. 32.
    Unterberg, C, Börchers, T., Højrup, P., Roepstorff, P., Knudsen J., and Spener, F. (1990) ’Cardiac fatty acid binding protein. Isolation and characterization of the mitochondrial fatty acid binding protein and its structural relationship with the cytosolic isoforms’ ’J. Biol. Chem. 265, 16255–16261.Google Scholar
  33. 33.
    Fohlman, J., Peterson, P., Roepstorff, P., Højrup, P., Kamensky, I., Säve, G., Håkansson, P., and Sundqvist, B. (1985) ’Comparison of 252-Californium plasma desorption and fast atom bombardment mass spectrometry for the analysis of small peptides’, Biomed. Mass Spectrom., 12, 380–387.CrossRefGoogle Scholar
  34. 34.
    Vorst, H.J., Van Tilborg, M.W.E.M., Van Veelen, P.A., Tjaden, U.R. and Van der Greef, J. (1990) ’Sequence-informative fragmentation of peptides up to a molecular weight of 4.6 kDa in plasma desorption mass spectrometry’, Rapid Commun. Mass Spectrom., 4, 202–205.CrossRefGoogle Scholar
  35. 35.
    Talbo, G. and Roepstorff, P. (1990) ’Sequence determination of N-acetylatedN,O-per-methylated peptides by plasma desorption mass spectrometry’, Biomed. Environ. Mass Spectrom., 19, 589–596.CrossRefGoogle Scholar
  36. 36.
    Roepstorff, P., Klarskov, K., and Højrup, P. (1989) ’Strategy for the use of plasma desorption mass spectrometry in protein sequence analysis’ in B. Wittman-Liebold (ed.), Methods in Protein Sequence Analysis 1988, Springer Verlag, Berlin. BRD, pp.191–198.CrossRefGoogle Scholar
  37. 37.
    Talbo, G., Højrup, P., Rahbek-Nielsen, H., Andersen, S.O. and Roepstorff, P. (1991) ’Determination of the covalent structure of an N- and C-terminally blocked glycoprotein from endocuticle of Locusta migratotia. Combined use of plasma desorption mass spectrometry and Edman degradation to study post-translationally modified proteins’, Eur.J. Biochem., 195, 495–504.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Peter Roepstorff
    • 1
  1. 1.Department of Molecular BiologyOdense UniversityOdense MDenmark

Personalised recommendations