Advertisement

Ruthenium-106 in the Black Sea

  • K. O. Buesseler
  • H. D. Livingston
  • S. A. Casso
Part of the NATO ASI Series book series (ASIC, volume 351)

Abstract

Profiles of Chernobyl 106Ru and137 Cs were obtained at margin and interior sites in the Black Sea between 1986 and 1988. The data show a vertical separation in the activity distributions of these two tracers. Ruthenium-106 is found at depths below the Chernobyl 137Cs, indicating that 106Ru is removed via particle scavenging processes, unlike the Cs isotopes which serve primarily as tracers of physical mixing. In 1988, more detailed measurements at depths near the oxic/anoxic interface suggest that a subsurface maximum in 106Ru occurs at the same depth as the paniculate Mn maximum above oxygen zero, with perhaps a secondary peak below. Inventory calculations indicate that while 106Ru has been significantly scavenged from the upper 50m, the net loss of 106Ru from the upper 200m has been relatively small since its input in 1986. This implies that substantial 106RU is remineralized from sinking particles, and returns to the dissolved pool, thus limiting net export and increasing the apparent residence time of Ru. Relatively high deep water 106Ru inventories (50% of total) suggest that a substantial fraction of the 106Ru transient tracer reaches the deep waters as a pulse shortly after delivery. This is analogous to what has been seen for the weapons testing fallout radionuclide, 239,240Pu.

Keywords

Sediment Trap Woods Hole Oceanographic Institution Subsurface Maximum Interior Site Chernobyl Fallout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarkrog, A. (1988) ‘The radiological impact of the Chernobyl debris compared with that from nuclear weapons fallout’, J. Environ. Radioactivity 6,151–162.CrossRefGoogle Scholar
  2. Bowen, V. T., Noshkin, V. E., Livingston, H. D. and Volchok, H. L. (1980) ‘Fallout radionuclides in the Pacific Ocean: Vertical and horizontal distributions, largely from GEOSECS stations’, Earth Planet. Sci. Lettr. 49,411–434.CrossRefGoogle Scholar
  3. Brewer, P. G. and Spencer, D. W. (1974) ‘Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases’, in E. T. Degens and D. A. Ross (eds.), The Black Sea-Geology, Chemistry, and Biology, The American Association of Petroleum Geologists, Tulsa, OK, pp. 137–143.Google Scholar
  4. Buesseler, K. O. and Sholkovitz, E. R. (1987) ‘The geochemistry of fallout plutonium in the North Atlantic: II.240Pu/239 Pu ratios and their significance’, Geochim. Cosmochim. Acta 51,2623–2637.CrossRefGoogle Scholar
  5. Buesseler, K. O., Livingston, H. D., Honjo, S., Hay, B. J., Manganini, S. J., Degens, E., Ittekkot, V., izdar, E. and Konuk, T. (1987) ‘Chernobyl radionuclides in a Black Sea sediment trap’, Nature 329, 825–828.CrossRefGoogle Scholar
  6. Buesseler, K. O., Livingston, H. D., Honjo, S., Hay, B. J., Konuk, T. and Kempe, S. (1990a) ‘Scavenging and particle deposition in the southwestern Black Sea-evidence from Chernobyl radiotracers’, Deep-Sea Research 37,413–30.CrossRefGoogle Scholar
  7. Buesseler, K. O., Casso, S. A., Hartman, M. C. and Livingston, H. D. (1990b) ‘Determination of fission-products and actinides in the Black Sea following the Chernobyl accident’, Journal of Radioanalytical and Nuclear Chemistry 138,33–47.CrossRefGoogle Scholar
  8. Buesseler, K. O., Livingston, H. D. and Casso, S. A. (1991) ‘Mixing between oxic and anoxic waters of the Black Sea as traced by Chernobyl cesium isotopes’, Deep-Sea Research, Black Sea Oceanography,in press.Google Scholar
  9. Camplin, W. C., Mitchell, N. T., Leonard, D. R. P. and Jefferies, D. F. (1986) ‘Radioactivity in surface and coastal waters of the British Isles. Monitoring of fallout from the Chernobyl reactor accident’,Aquat. Environ. Monit. Rep., MAFF Direct. Fish. Res., Lowestoft (15) 45 pp.Google Scholar
  10. Cochran, J. K. (1985) ‘Particle mixing rates in sediments of the eastern equatorial Pacific: Evidence from 210Pb,239,240Pu and 137Cs distributions at MANOP sites’, Geochim. Cosmochim. Acta 49,1195–1210.CrossRefGoogle Scholar
  11. Codispoti, L. A., Friederich, G. E., Murray, J. W. and Sakamoto, C. M. (1991) ‘Chemical variability in the Black Sea: Implications of continuous vertical profiles that penetrated the oxic/anoxic interface’, Deep-Sea Research, Black Sea Oceanography, in press.Google Scholar
  12. Cuddihy, R. G., Finch, G. L., Newton, G. J., Hahn, F. F., Mewhinney, J. A., Rothenberg, S. J. and Powers, D. A. (1989) ‘Characteristics of radioactive particles released from the Chernobyl nuclear reactor’, Environ. Sci. Technol. 23,89–95.CrossRefGoogle Scholar
  13. Devell, L., Tovedal, H., Bergstrom, U., Appelgren, A., Chyssler, J. and Andersson, L. (1986) ‘Initial observations of fallout from the reactor accident at Chernobyl’, Nature 321,192–193.CrossRefGoogle Scholar
  14. Duursma, E. K. and Eisma, D. (1973) ‘Theoretical, experimental and field studies concerning reactions of radioisotopes with sediments and suspended particles of the sea. Part C: Applications to field studies’, Netherlands Journal of Sea Research 6(3), 265–324.CrossRefGoogle Scholar
  15. Emerson, S., Cranston, R. E. and Liss, P. S. (1979) ‘Redox species in a reducing fjord: equilibrium and kinetic considerations’, Deep-Sea Research 26,859–878.CrossRefGoogle Scholar
  16. Fowler, S. W., Buat-Menard, P., Yokoyama, Y., Ballestra, S, Holm, E. and Van guyen, H. (1987) ‘Rapid removal of Chernobyl fallout from Mediterranean surface waters by biological activity’, Nature 329, 56–58.CrossRefGoogle Scholar
  17. Friederich, G. E., Codispoti, L. A. and Sakamoto, C. M. (1990) ‘Bottle and pumpcast data from the 1988 Black Sea expedition’, Monterey Bay Aquarium Research Institute Tech. Rept. No. 90–3.Google Scholar
  18. Guegueniat, P. (1975) ‘Comportement physico-chimique du ruthenium de fission dans le milieu marine’, Commissariat a l’Energie Atomique, Rapport CEA-R-4644, France.Google Scholar
  19. Guegueniat, P., Baron, Y. and Auffret, J.-P. (1976) ‘Note sur l’evolution de la radioactivite artificielle dans les sediments de la manche pendant les annees 1971–1975, Commissariat a l’Energie Atomique, Rapport CEA-R-4739, France.Google Scholar
  20. IAEA Board of Governors (1986) ‘INSAG Summary Report on the Post-Accident Review Meeting on the Chernobyl Accident’, GOV/2268, IAEA, Vienna.Google Scholar
  21. Jacobs, L. and Emerson, S. (1982) ‘Trace metal solubility in an anoxic fjord’, Earth Planet. Sci. Lettrs. 60,237–252.CrossRefGoogle Scholar
  22. Jost, D. T., Gaggeler, H. W., Baltensperger, U., Zinder, B. and Haller, P. (1986) ‘Chernobyl fallout in size-fractionated aerosol’, Nature 324,22–23.CrossRefGoogle Scholar
  23. Kempe, S. and Nies, H. (1987) ‘Chernobyl nuclide record from a North Sea sediment trap’, Nature 329, 828–831.CrossRefGoogle Scholar
  24. Koide, M., Stallard, M., Hodge, V. and Goldberg, E. D. (1986) ‘Preliminary studies on the marine chemistry of ruthenium’, Netherlands Journal of Sea Research 20(2/3), 163–166.CrossRefGoogle Scholar
  25. Krey, P. W., Klusek, C. S., Sanderson, C, Miller, K. and Helfer, I. (1986) ‘Radiochemical characterization of Chernobyl fallout in Europe’, in H. L. Volchok and N. Chieco (eds.), A Compendium of the Environmental Measurements Laboratory’s Research Projects Related to the Chernobyl Nuclear Accident, U.S. Department of Energy Report EML-460, pp. 155–213.Google Scholar
  26. Kusakabe, M., Ku, T.-L., Harada, K., Tagucgi, K. and Tsunogai, S. (1988) ‘Chernobyl radioactivity found in mid-water sediment interceptors in the N. Pacific and Bering Sea’, Geophy. Res. Lett. 15, 44–47.CrossRefGoogle Scholar
  27. Lapicque, G., Livingston, H. D., Lambert, C. E., Bard, E., and Labeyrie, L. (1987) ‘Interpretation of Pu-239,240 in Atlantic sediments with a non-steady state input model’, Deep-Sea Res. 34(1), 1841–1850.CrossRefGoogle Scholar
  28. Lewis, B. L. and Landing, W. M. (1991) ‘The biogeochemistry of manganese and iron in the Black Sea’, Deep-Sea Res., Black Sea Oceanography, in press.Google Scholar
  29. Livingston, H. D. and Anderson, R. F. (1983) ‘Large particle transport of plutonium and other fallout radionuclides to the deep ocean’, Nature 303,228–231.CrossRefGoogle Scholar
  30. Livingston, H. D., Bowen, V. T., Casso, S. A., Volchok, H. L., Noshkin, V. E., Wong, K. M. and Beasley, T.M. (1985) ‘Fallout Nuclides in Atlantic and Pacific Water Columns: GEOSECS Data’, Woods Hole Oceanographic Institution Technical Report WHOI-85-19.CrossRefGoogle Scholar
  31. Livingston, H. D, Clarke, W. R., Honjo, S.,İzdar, E. and Konuk, T. (1986) ‘Chernobyl fallout studies in the Black Sea and other ocean areas’, in H. L. Volchok and N. Chieco (eds.), A Compendium of the Environmental Measurements Laboratory’s Research Projects Related to the Chernobyl Nuclear Accident, U.S. Department of Energy Report EML-460, pp. 214–223.Google Scholar
  32. Livingston, H. D., Mann, D. R., Casso, S. A., Schneider, D. L., Surprenant, L. D. and Bowen, V. T. (1987) ‘Particle and solution phase depth distributions of transuranics and 55Fe in the North Pacific’, J. Environ. Radioactivity 5,1–24.CrossRefGoogle Scholar
  33. Livingston, H. D., Buesseler, K. O., izdar, E. and Konuk, T. (1988) ‘Characteristics of Chernobyl fallout in the southern Black Sea’, in J. C. Guary, P. Guegueniat and R. J. Pentreath (eds.), Radionuclides: A Tool for Oceanography, Elsevier Appked Science Publishers, Essex, U.K., pp. 204–216.Google Scholar
  34. Misaelides, P., Sikalidis, C., Tsitouridou, R. and Alexiades, C. (1987) ‘Distribution of fission products in dust samples from the region of Thessaloniki, Greece, after the Chernobyl nuclear accident’, Environmental Pollution 47,1–8.CrossRefGoogle Scholar
  35. Pentreath, R. J. (ed.), (1985) Behaviour of Radionuclides Released Into Coastal Waters, IAEA-TecDoc-329 (IAEA, Vienna).Google Scholar
  36. Pillai, K. C. and Dey, N. N. (1975) ‘Radioruthenium in coastal waters’, Reference Methods for Marine Radioactivity Studies II, Technical Reports Series No. 169 (IAEA, Vienna), pp. 147–154.Google Scholar
  37. Santschi, P. H., Bollhalder, S., Farrenkothen, K., Lueck, A., Zingg, S. and Sturm, M. (1988) ‘Chernobyl radionuclides in the environment: Tracers for the tight coupling of atmospheric, terrestrial, and aquatic geochemical processes’, Environmental Science & Technology 22, 510–516.CrossRefGoogle Scholar
  38. Schijf, J., de Baar, H. J. W., Wijbrans, J. R. and Landing, W. M. (1991) ‘Dissolved rare earth elements in the Black Sea’, Deep-Sea Research, Black Sea Oceanography, in press.Google Scholar
  39. Sibley, T. H., Sanchez, A. and Schell, W. R. (1981) ‘Distribution coefficients for radionuclides in aquatic environments-Adsorption and desorption studies of106Ru’, U.S. Nuclear Regulatory Commission NUREG/CR-1852, vol. 3.Google Scholar
  40. Silker, W. B. (1972) ‘Horizontal and vertical distributions of radionuclides in the North Pacific Ocean’, J. Geophys. Res. 77(6), 1061–1070.CrossRefGoogle Scholar
  41. Spencer, D. W., Brewer, P. G., and Sachs, P. L. (1972) ‘Aspects of the distribution and trace element composition of suspended matter in the Black Sea’, Geochim. Cosmochim. Acta 36,71–86.CrossRefGoogle Scholar
  42. Stanners, D. A. and Aston, S. R. (1981)’134Cs:137Cs and106Ru:137Cs ratios in intertidal sediments from the Cumbria and Lancashire coasts, England’, Estuarine, Coastal and Shelf Science 13,409–17.CrossRefGoogle Scholar
  43. Tebo, B. M., Nealson, K. H., Emerson, S. and Jacobs, L. (1984) ‘Microbial mediation of Mn(II) and Co(II) precipitation at the O2 /H2 S interfaces in two anoxic fjords’, Limnol. Oceanogr. 29,1247–1258.CrossRefGoogle Scholar
  44. Van Sickle, J., Weimer, W. C. and Larsen, D. P. (1983) ‘Mixing rates in Shagawa Lake, Minnesota, sediments as determined from106 Ru profiles’, Geochim. Cosmochim. Acta 47,2189–2197.CrossRefGoogle Scholar
  45. White, G., Relander, M., Postal, J. and Murray, J. W. (1989) ‘Hydrographic data from the 1989 Black Sea oceanographic expediton’, University of Washington, College of Ocean and Fishery Sciences, Special Report No. 109.Google Scholar
  46. Wilson, P. D. (1968) ‘Some aspects of the chemistry of ruthenium in sea water’, U.K. Atomic Energy Auth. Prod. Group, PG Rept. No. 819.Google Scholar
  47. Wirth, E., van Egmond, N. D. and Suess, M. J. (eds.) (1987) ‘Assessment of radiation dose commitment in Europe due to the Chernobyl accident’, Institut fur Strahlenhygiene des Bundesgesundheitsamtes,ISH-HEFT-108, Munchen.Google Scholar
  48. Young, J. A. and Silker, W. B. (1974) ‘The determination of air-sea exchange and oceanic mixing rates using 7Be during the Bomex experiment’, J. Geophys. Res. 79(30), 4481–4489.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • K. O. Buesseler
    • 1
  • H. D. Livingston
    • 1
  • S. A. Casso
    • 1
  1. 1.Chemistry DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations