Skip to main content

Two Chosen Examples for Fractals: One Deterministic, the Other Random

  • Chapter
Statistical Physics, Automata Networks and Dynamical Systems

Part of the book series: Mathematics and Its Applications ((MAIA,volume 75))

  • 239 Accesses

Abstract

Let us ask if it is possible to tile a plane with wheels rolling on each other such that all the area is covered with wheels. This rather exotic question can arise in various contexts. One could imagine the wheels to be eddies on the surface of an incompressible fluid and then ask if the fluid motion can be totally decomposed into stable eddies. Or, one could think of mechanical roller bearings between two moving surfaces, like two tectonic plates, and then ask if one can completely fill the space between the rolling cylinders with other rolling cylinders such that no cylinder excerces any frictional work on another one. The question we are asking is, in fact, geometrical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCann, W., S. Nishenko, L. Sykes, J. Krause, Pageoph 117, 1082 (1979); C. Lomnitz, Bull. Seism. Soc. Am. 72, 1441 (1982).

    Article  Google Scholar 

  2. Sammis, C., G. King, R. Biegel, Pageoph 125, 777 (1987).

    Article  Google Scholar 

  3. Mandelbrot, B.B., The Fractal Geometry of Nature, Freeman, San Francisco, 1982.

    MATH  Google Scholar 

  4. Boyd, D.W., Mathematica 20, 170 (1973); see also ref. 3.

    MATH  Google Scholar 

  5. Falconer, J.K., The Geometry of Fractal Sets, Cambridge Univ. Press, 1985; L.R. Ford, Automorphic Functions, Chelsen Publ., 1929.

    Google Scholar 

  6. Herrmann, H.J., G. Mantica, D. Bessis, Phys. Rev. Lett. 65, 3223 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  7. Manna, S.S., H.J. Herrmann, preprint.

    Google Scholar 

  8. for a review see G. Paladin and A. Vulpiani, Phys. Rep. 156, 147 (1987) or A. Coniglio, L. de Arcangelis and H.J. Herrmann, Physica A 157, 21 (1989).

    Article  MathSciNet  Google Scholar 

  9. Huber, G., private communication.

    Google Scholar 

  10. Manna, S.S., T. Vicsek, preprint.

    Google Scholar 

  11. Bessis, D., S. Demko, Comm. in Math. Phys., preprint.

    Google Scholar 

  12. Batchelor, G.K., Theory of homogeneous turbulence, Cambridge Univ. Press, 1982.

    Google Scholar 

  13. Kauffman, S.A., J. Theor. Biol. 22, 437 (1969).

    Article  MathSciNet  Google Scholar 

  14. Derrida, B., Y. Pomeau, Europhys Lett. 1, 45 (1986); B. Derrida, D. Stauffer, Europhys Lett. 2, 739 (1986).

    Article  Google Scholar 

  15. da Silva, L.R., H.J. Herrmann, J. Stat. Phys. 52, 463 (1988).

    Article  Google Scholar 

  16. Wolfram, S., Theory and Application of Cellular Automata, World Scientific, Singapore, 1986; E. Bienenstock, F. Fogelman-Soulié, G. Weisbuch (eds), Disordered Systems and Biological Organization, Springer, NATO ASI Series F, 1986.

    Google Scholar 

  17. Herrmann, H.J., in Nonlinear Phenomena in Complex Systems, A.N. Proto (ed), Elsevier, Amsterdam, 1989.

    Google Scholar 

  18. Pomeau, Y., J. Phys. A 17, L415 (1984); H.J. Herrmann, J. Stat. Phys. 45, 145 (1986).

    Article  MathSciNet  Google Scholar 

  19. Zabolitzky, J.G., H.J. Herrmann, J. Comp. Phys. 76, 426 (1988); S.C. Glotzer, D. Stauffer, S. Sastry, Physica A 164, 1 (1990).

    Article  MATH  Google Scholar 

  20. Stauffer, D., in Computer Simulation Studies in Condensed Matter Physics II, D.P. Landau, K.K. Mon and H.-B. Schüttler (eds), Springer, Heidelberg, 1990.

    Google Scholar 

  21. de Arcangelis, L., A. Coniglio, Europhys Lett. 7, 113 (1988).

    Article  Google Scholar 

  22. Hilhorst, H.J., M. Nijmeijer, J. Physique 48, 185 (1987).

    Article  MathSciNet  Google Scholar 

  23. Golinelli, O., B. Derrida, J. Phys. A 22, L939 (1989).

    Article  Google Scholar 

  24. Mariz, A.M., J. Phys. A 23, 979 (1990).

    Article  MathSciNet  Google Scholar 

  25. Stanley, H.E., D. Stauffer, J. Kertész, H.J. Herrmann, Phys. Rev. Lett. 59, 2326 (1987).

    Article  Google Scholar 

  26. Costa, U., J. Phys. A 20, L583 (1987).

    Article  Google Scholar 

  27. Le Caër, G., J. Phys.A 22, L647 (1989) and Physica A 159, 329 (1989).

    Article  Google Scholar 

  28. Derrida, B., G. Weisbuch, Europhys Lett. 4., 657 (1987).

    Article  Google Scholar 

  29. Coniglio, A., L. de Arcangelis, H.J. Herrmann, N. Jan, Europhys. Lett. 8, 315 (1989).

    Article  Google Scholar 

  30. Ashkin, J., E. Teller, Phys. Rev. 64, 178 (1943).

    Article  Google Scholar 

  31. Parisi, G., Nucl. Phys. B 180, 378 (1981).

    Article  MathSciNet  Google Scholar 

  32. Guenoun, P., F. Perrot, D. Beysens, Phys. Rev. Lett. 63, 1152 (1989).

    Article  Google Scholar 

  33. de Arcangelis, L., H.J. Herrmann, A. Coniglio, J. Phys. A 23, L265 (1990).

    Article  Google Scholar 

  34. Neumann, A.U., B. Derrida, J. Physique 49, 1647 (1988).

    Article  Google Scholar 

  35. see e.g. G. Paladin and A. Vulpiani, Phys. Rep. 156, 147 (1987).

    Article  MathSciNet  Google Scholar 

  36. de Arcangelis, L., A. Coniglio, H.J. Herrmann, Europhys Lett. 9, 749 (1989).

    Article  Google Scholar 

  37. Campbell, I.A., L. de Arcangelis, Europhys Lett. …

    Google Scholar 

  38. de Arcangelis, L., H.J. Herrmann, A. Coniglio, J. Phys. A 22, 4659 (1989).

    Article  Google Scholar 

  39. Boissin, N., H.J. Herrmann, J. Phys. A 24, L43 (91).

    Google Scholar 

  40. de Arcangelis, L., A. Coniglio, preprint; A. Coniglio, in Correlations and Connectivity in Constrained Geometries, H.E. Stanley and N. Ostrowsky (eds), Kluwer, Dordrecht, 1990.

    Google Scholar 

  41. da Cruz, H.R., U.M.S. Costa and E.M.F Curado, J. Phys. A 22, L651 (1989).

    Article  Google Scholar 

  42. Mariz, A.M., H.J. Herrmann, L. de Arcangelis, J. Stat. Phys. 59, 1043 (1990).

    Article  Google Scholar 

  43. Stauffer, D., Physica A 162, 27 (1990).

    Article  MathSciNet  Google Scholar 

  44. Mariz, A.M., H.J. Herrmann, J. Phys. A 22, L1081 (1989); O. Gollinelli, Physica A 167, 736 (1990).

    Article  Google Scholar 

  45. Golinelli, O., B. Derrida, J. Physique 49, 1663 (1988).

    Article  MathSciNet  Google Scholar 

  46. Manna, S.S., J. Physique 51, 1261 (1990).

    Article  Google Scholar 

  47. Barber, M.N., B. Derrida, J. Stat. Phys. 51, 877 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  48. Miranda, E., preprint HLRZ 82/90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herrmann, H.J. (1992). Two Chosen Examples for Fractals: One Deterministic, the Other Random. In: Goles, E., Martínez, S. (eds) Statistical Physics, Automata Networks and Dynamical Systems. Mathematics and Its Applications, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2578-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2578-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5137-8

  • Online ISBN: 978-94-011-2578-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics