Skip to main content

Shocks in the Burgers Equation and the Asymmetric Simple Exclusion Process

  • Chapter
Statistical Physics, Automata Networks and Dynamical Systems

Part of the book series: Mathematics and Its Applications ((MAIA,volume 75))

Abstract

The Burgers equation is used as a model of transport in highways. The function u(r, t) represents the density of cars at rIR at time t. We assume that, in the absence of other cars, the velocity of a single car is θ. Due to the presence of other cars this velocity can be lower. The variation of density at r in an infinitesimal time interval dt is given by the number of cars entering in the infinitesimal interval (r, r + dr) that is θu (r - dr, t)(1 - u(r, t)) minus the number of cars exiting that interval: θu(r, t)(1- u(r + dr,t)) (note that 1 - u is the density of free space in the interval). Hence the density must satisfy the equation

$$ \frac{{\partial u}}{{\partial t}} = - \theta \frac{{\partial [u(1 - u)]}}{{\partial r}} $$
((1.1a))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. D. Andjel, M. Bramson, T. M. Liggett (1988). Shocks in the asymmetric simple exclusion process. Probab. Theor. Rel. Fields 78 231–247.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. D. Andjel, C. Kipnis (1984). Derivation of the hydrodynamical equations for the zero-range interaction process. Ann. Probab. 12 325–334.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. D. Andjel, M. E. Vares (1987). Hydrodynamic equations for attractive particle systems on ℤ. J. Stat. Phys. 47 265–288.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Bak, Ch. Tang, K. Wiesenfeld (1988). Self-Organized criticallity. Phys. Rev. A, 38(1) 364–373.

    MathSciNet  Google Scholar 

  5. A. Benassi, J-P. Fouque (1987). Hydrodynamical limit for the asymmetric simple exclusion process. Ann. Probab. 15 546–560.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Benassi, J-P. Fouque (1990). Fluctuation field for the asymmetric simple exclusion process. Preprint.

    Google Scholar 

  7. A. Benassi, J-P. Fouque, E. Saada, M. E. Vares (1991) Asymmetric attractive particle systems on Z: hydrodynamical limit for monotone initial profiles. J. Stat. Phys.

    Google Scholar 

  8. F. Bertein, A. Galves (1977) Comportement asymptotique de deux marches aleatoires sur Z qui interagissent par exclusion. C.R. Acad. Sci. Paris A, 285, 681–683.

    MathSciNet  MATH  Google Scholar 

  9. B. M. Boghosian, C. D. Levermore (1987). A cellular automaton for Burgers’ equation. Complex Systems 1 17–30.

    MathSciNet  MATH  Google Scholar 

  10. C. Boldrighini, C. Cosimi, A. Frigio, M. Grasso-Nunes (1989). Computer simulations of shock waves in completely asymmetric simple exclusion process. J. Stat. Phys. 55, 611–623.

    Article  MathSciNet  Google Scholar 

  11. M. Bramson (1988) Front propagation in certain one dimensional exclusion models. J. Stat. Phys. 51, 863–869.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Breiman (1968). Probability. Addison-Wesley, Reading, Massachusetts.

    MATH  Google Scholar 

  13. Z. Cheng, J. L. Lebowitz, E. R. Speer (1990). Microscopic shock structure in model particle systems: the Boghosian Levermore revisited. Preprint.

    Google Scholar 

  14. A. De Masi, P. A. Ferrari (1985) Self diffusion in one dimensional lattice gases in the presence of an external field. J. Stat. Phys. 38, 603–613.

    Article  MATH  Google Scholar 

  15. A. De Masi, P. A. Ferrari, M. E. Vares (1989) A microscopic model of interface related to the Burgers equation. J. Stat. Phys. 55, 3/4 601–609.

    Article  MATH  Google Scholar 

  16. A. De Masi, C. Kipnis, E. Presutti, E. Saada (1988). Microscopic structure at the shock in the asymmetric simple exclusion. Stochastics 27, 151–165.

    Google Scholar 

  17. A. De Masi, E. Presutti, E. Scacciatelli (1989), The weakly asymmetric simple exclusion process. Ann Inst. Henry Poincaré, 25, 1:1–38.

    MATH  Google Scholar 

  18. P. Dittrich (1989) Travelling waves and long time behaviour of the weakly asymmetric exclusion process. Probab. Theor. Related Fields.

    Google Scholar 

  19. P. A. Ferrari (1986). The simple exclusion process as seen from a tagged particle. Ann. Probab. 14 1277–1290.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. A. Ferrari (1990) Shock fluctuations in asymmetric simple exclusion. To appear in Probab. Theor. Related Fields.

    Google Scholar 

  21. P. A. Ferrari, E. Goles, M. E. Vares (1990). In preparation.

    Google Scholar 

  22. P. A. Ferrari, C. Kipnis, E. Saada (1991) Microscopic structure of travelling waves for asymmetric simple exclusion process. Ann. Probab. 19 226–244.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. A. Ferrari, K. Ravishankar (1990). Shocks in asymmetric exclusion cellular automata. Preprint IME-USP. Submitted Ann. Appl. Probab.

    Google Scholar 

  24. P. A. Ferrari, K. Ravishankar, M. E. Vares (1990). Shocks in asymmetric exclusion probabilistic cellular automata. In preparation.

    Google Scholar 

  25. J-P. Fouque (1989). Hydrodynamical behavior of asymmetric attractive particle systems. One example: one dimensional nearest neighbors asymmetric simple exclusion process. Preprint.

    Google Scholar 

  26. J. Gärtner (1988). Convergence towards Burger’s equation and propagation of chaos for weakly asymmetric exclusion processes. Stochastic Process Appl. 27, 233–260.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Gärtner, E. Presutti (1989). Shock fluctuations in a particle system. CARR Reports in Math. Physics 1/89.

    Google Scholar 

  28. E. Goles (1990). Sand Piles, combinatorial games and cellular automata. Preprint.

    Google Scholar 

  29. T. E. Harris (1967). Random measures and motions of point processes. Z. Wahrsch. verw. Gebiete. 9 36–58.

    Article  Google Scholar 

  30. T. E. Harris (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355–378.

    Article  MATH  Google Scholar 

  31. C. Kipnis (1986). Central limit theorems for infinite series of queues and applications to simple exclusion. Ann. Probab. 14 397–408.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Krug, H. Spohn (1988). Universality classes for deterministic surface growth. Phys. Review A, 38 4271–4283.

    MathSciNet  Google Scholar 

  33. C. Landim (1989). Hydrodynamical equation for attractive particle systems on Z d. Preprint.

    Google Scholar 

  34. C. Landim (1990). Hydrodynamical limit for asymmetric attractive particle systems in ℤd. Preprint.

    Google Scholar 

  35. P. D. Lax (1972). The formation and decay of shock waves. Amer. Math. Monthly (March).

    Google Scholar 

  36. J. L. Lebowitz, V. Orlandi, E. Presutti (1989). Convergence of stochastic cellular automaton to Burger’s equation. Fluctuations and stability. Preprint.

    Google Scholar 

  37. J. L. Lebowitz, E. Presutti, H. Spohn (1988). Microscopic models of hydrodynamical behavior. J. Stat. Phys. 51, 841–862

    Article  MathSciNet  MATH  Google Scholar 

  38. T. M. Liggett (1976). Coupling the simple exclusion process. Ann. Probab. 4 339–356.

    Article  MathSciNet  MATH  Google Scholar 

  39. T. M. Liggett (1985). Interacting Particle Systems. Springer, Berlin.

    Book  MATH  Google Scholar 

  40. S. C. Port, C. J. Stone (1973). Infinite particle systems. Trans. Amer. Math. Soc. 178 307–340.

    Article  MathSciNet  MATH  Google Scholar 

  41. E. Saada (1987). A limit theorem for the position of a tagged particle in a simple exclusion process. Ann. Probab. 15 375–381.

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Saada (1988). Mesures invariantes pour les sistèmes à une infinité de particules linéaires à valeurs dans [0, ∞[s.

    Google Scholar 

  43. F. Spitzer (1970). Interaction of Markov processes. Adv. Math., 5 246–290.

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Spohn (1989). Large Scale Dynamics of Interacting Particles. Part B: Stochastic Lattice Gases. Preprint.

    Google Scholar 

  45. K. Ravishankar (1990) Preprint.

    Google Scholar 

  46. M. Rosenblatt (1967). Transition probability operators. Proc. Fifth Berkeley Symp. Math. Stat. Prob. 2 473–483.

    Google Scholar 

  47. H. Rost (1982) Nonequilibrium behavior of a many particle process: density profile and local equilibrium. Z. Wahrsch. verw. Gebiete, 58 41–53.

    Article  MathSciNet  Google Scholar 

  48. H. Van Beijeren (1991) Fluctuations in the motions of mass and of patterns in one-dimensional driven diffusive systems. J. Stat. Phys.

    Google Scholar 

  49. J. Walker (1989). How to analyze the shock waves that sweep through expressway traffic. Scientific American August 1989:84–87.

    Google Scholar 

  50. D. Wick (1985). A dynamical phase transition in an infinite particle system. J. Stat. Phys. 38 1015–1025.

    Article  MathSciNet  MATH  Google Scholar 

  51. S. Wolfram (1983). Rev. Mod. Phys. 55 601.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ferrari, P.A. (1992). Shocks in the Burgers Equation and the Asymmetric Simple Exclusion Process. In: Goles, E., Martínez, S. (eds) Statistical Physics, Automata Networks and Dynamical Systems. Mathematics and Its Applications, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2578-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2578-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5137-8

  • Online ISBN: 978-94-011-2578-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics