Skip to main content

Aspects of The Optimization Process in Practice

  • Chapter

Part of the book series: Solid Mechanics And Its Applications ((SMIA,volume 11))

Abstract

Occasionally, a structural analyst will write a design program that includes the calculation of structural response as well as an implementation of a constrained optimization algorithm, such as those discussed in Chapter 5. More often, however, the analyst will have a structural analysis package, such as a finite-element program, as well as an optimization software package available to him. The task of the analyst is to combine the two so as to bring them to bear on the structural design problem that he wishes to solve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmit, L.A. Jr., and Farshi, B., “Some Approximation Concepts for Structural Synthesis,” AIAA Journal, 12, 5, 692–699, 1974.

    Article  Google Scholar 

  2. Mills-Curran, W.C., Lust, R.V., and Schmit, L.A. Jr., “Approximation Methods for Space Frame Synthesis,” AIAA Journal, 21 (11), 1571–1580, 1983.

    Article  MATH  Google Scholar 

  3. Storaasli, O.O., and Sobieszczanski, J., “On the Accuracy of the Taylor Approximation for Structure Resizing,” AIAA Journal, 12 (2), 231–233, 1974.

    Article  Google Scholar 

  4. Noor, A.K., and Lowder, H.E., “Structural Reanalysis via a Mixed Method,” Computers and Structures, 5, 9–12,1975.

    Article  Google Scholar 

  5. Fuchs, M.B., “Linearized Homogeneous Constraints in Structural Design,” Int. J. Mech. Sci., 22, pp. 33–40, 1980.

    Article  MATH  Google Scholar 

  6. Fuchs, M.B., and Haj Ali, R.M., “A Family of Homogeneous Analysis Models for the Design of Scalable Structures,” Structural Optimization, 2, pp. 143–152, 1990.

    Article  Google Scholar 

  7. Starnes, J.H. Jr., and Haftka, R.T., “Preliminary Design of Composite Wings for Buckling, Stress and Displacement Constraints,” Journal of Aircraft, 16, 564–570, 1979.

    Article  Google Scholar 

  8. Haftka, R.T., and Shore, C.P., “Approximate Methods for Combined Thermal-Structural Analysis,” NASA TP-1428, 1979.

    Google Scholar 

  9. Prasad, B., “Explicit Constraint Approximation Forms in Structural Optimization—Part 1:Analyses and Projections,” Computer Methods in Applied Mechanics and Engineering, 40(1), 1–26, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  10. Braibant, V., and Fleury, C., “An Approximation Concept Approach to Shape Optimal Design,” Computer Methods in Applied Mechanics and Engineering, 53, pp. 119–148, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  11. Prasad, B., “Novel Concepts for Constraint Treatments and Approximations in Efficient Structural Synthesis,” AIAA J., 22, 7, pp. 957–966, 1984.

    Article  MATH  Google Scholar 

  12. Woo, T.H., “Space Frame Optimization Subject to Frequency Constraints,” AIAA J. 25, 10, pp. 1396–1404, 1987.

    Article  Google Scholar 

  13. Schmit, L.A., Jr., and Miura, H., “Approximation Concepts for Efficient Structural Synthesis,” NASA CR-2552, 1976.

    Google Scholar 

  14. Lust, R.V., and Schmit, L.A., Jr., “Alternative Approximation Concepts for Space Frame Synthesis,” AIAA J., 24, 10, pp. 1676–1684, 1986.

    Article  MATH  Google Scholar 

  15. Salajeghah, E., and Vanderplaats G.N.,“An Efficient Approximation Method for Structural Synthesis with Reference to Space Structures,” Space Struct. J., 2, pp. 165–175, 1986/7.

    Google Scholar 

  16. Kodiyalam, S., and Vanderplaats G.N., “Shape Optimization of 3D Continuum Structures Via Force Approximation Technique, “ AIAA J.,27(9), pp. 1256–1263, 19

    Article  Google Scholar 

  17. Hansen, S. R., and Vanderplaats G.N., “Approximation Method for Configuration Optimization of Trusses,” AIAA J., 28(1), pp. 161–168, 1990.

    Article  Google Scholar 

  18. Box, G.E.P., and Draper, N.R., Empirical Model-Building and Response Surface, Wiley, New York, 1987.

    Google Scholar 

  19. Barthelemy, J.-F., and Haftka, R.T., “Recent Advances in Approximation Concepts for Optimum Structural Design,” NASA TM 104032, 1991.

    Google Scholar 

  20. Haftka, R.T., Nachlas, J.A., Watson, L.T., Rizzo, T., and Desai, R., “Two-Point Constraint Approximation in Structural Optimization,” Computer Methods in Applied Mechanics and Engineering, 60, pp. 289–301, 1989.

    Article  Google Scholar 

  21. Fadel, G.M., Riley, M.F., and Barthelemy, J.-F.M., “Two Point Exponential Approximation Method for Structural Optimization,” Structural Optimization, 2, pp. 117–124, 1990.

    Article  Google Scholar 

  22. Haftka, R.T., “Combining Local and Global Approximations,” AIAA Journal, Vol. 29 (9), pp. 1523–1525, 1991.

    Article  Google Scholar 

  23. Chang, K.-J., Haftka, R.T., Giles, G.L., and Kao, P.-J., “Sensitivity Based Scaling for Correlating Structural Response from Different Analytical Models,” AIAA Paper 91-0925, Proceedings of AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics and Materials Conference, Baltimore, MD, April 8–10, 1991.

    Google Scholar 

  24. Kirsch, U., and Taye, S., “High Quality Approximations of Forces for Optimum Structural Design,” Computers and Structures, 30, 3, pp. 519–527, 1988.

    Article  Google Scholar 

  25. Haley, S.B., “Solution of Modified Matrix Equations,” SIAM J. Numer. Anal., 24(4), pp. 946–951, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  26. Fuchs, M.B., and Steinberg, Y., “An Efficient Approximate Analysis Method Based on an Exact Univariate Model for the Element Loads”, Structural Optimization, 3(1), 1991.

    Google Scholar 

  27. Holnicki-Szulc, J., Virtual Distortion Method, Springer Verlag, Berlin, pp. 30–40, 1991.

    MATH  Google Scholar 

  28. Pritchard, J.I., and Adelman, H.M., “Differential Equation Based Method for Accurate Approximation in Optimization,” AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics and Materials Conference, Long Beach, CA, April 2–4, Part I, pp. 414–424, 1990.

    Google Scholar 

  29. Murthy, D.V., and Haftka, R.T., “Approximations to Eigenvalues of Modified General Matrices,” Computers and Structures, 29, pp. 903–917, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  30. Shephard, M.S., and Yerry, M.A., “Automatic Finite Element Modeling for Use with Three-Dimensional Shape Optimization,” in The Optimum Shape (Bennett, J.A., and Botkin M.E., eds.), Plenum Press, N.Y. 1986, pp. 113–135.

    Google Scholar 

  31. Yang, R.J., and Botkin, M.E., “A Modular Approach for Three-Dimensional Shape Optimization of Structures,” AIAA J., 25 (3), pp. 492–497, 1987.

    Article  Google Scholar 

  32. Kohn, R.V., and Strang, G., “Optimal Design and Relaxation of Variational Problems,” Comm. Pure Appl. Math., 39, pp. 113–137 (Part I), pp. 139-182 (Part II), and pp. 353-377 (Part III), 1986.

    Article  MathSciNet  MATH  Google Scholar 

  33. Rozvany, G.I.N., Ong, T.G., Szeto, W.T., Olhoff, N., and Bendsøe, M.P., “Least-Weight Design of Perforated Plates,” Int. J. Solids Struct., 23, pp. 521–536 (Part I), and pp. 537-550 (Part II), 1987.

    Article  MATH  Google Scholar 

  34. Bendsøe, M.P., and Kikuchi, N., “Generating Optimal Topologies in Structural Design using a Homogeneization Method,” Comp. Meth. Appl. Mech. Engng., 71, pp.197–224, 1988.

    Article  Google Scholar 

  35. Rasmussen, J., “Shape Optimization and CAD,” SARA, 1, 33–45, 1991.

    Google Scholar 

  36. Dorn, W.S., Gomory, R.E., and Greenberg, H.J., “Automatic Design of Optimal Structures,” J. Mécanique, 3, pp. 25–52, 1964.

    Google Scholar 

  37. Sheu, C.Y., and Schmit, L.A., “Minimum Weight Design of Elastic Redundant Trusses under Multiple Static Loading Conditions,” AIAA, J., 10(2), pp. 155–162, 1972.

    Article  Google Scholar 

  38. Reinschmidt, K.F., and Russel, A.D., “Applications of Linear Programming in Structural Layout and Optimization,” Comput. Struct., 4, pp. 855–869, 1974.

    Article  Google Scholar 

  39. Topping, B.H.V., “Shape Optimization of Skeletal Structures—a Review,” ASCE J. Struct. Enging., 109(8), pp. 1933–1951, 1983.

    Article  Google Scholar 

  40. Kirsch, U., “Optimal Topologies of Structures,” Appl. Mech. Rev., 42(8), pp. 223–239, 1989.

    Article  Google Scholar 

  41. McCullers, L.A., and Lynch, R.W., “Composite Wing Design for Aeroelastic Tailoring Requirements,” Air Force Conference on Fibrous Composites in Flight Vehicle Design, Dayton, Ohio, September, 1972.

    Google Scholar 

  42. McCullers, L.A., and Lynch, R.W., “Dynamic Characteristics of Advanced Filamentary Composites Structures,” AFFDL-TR-73-111, Vol. II, 1974.

    Google Scholar 

  43. Haftka, R.T., “Structural Optimization with Aeroelastic Constraints—A Survey of US Applications,” Int. J. Vehicle Design, 7, pp. 381–392, 1986.

    Google Scholar 

  44. Schmit, L.A., and Miura, H., “A New Structural Analysis / Synthesis Capability — Access I”, AIAA J. 14(5), pp. 661–671,19

    Article  Google Scholar 

  45. Fleury, C., and Schmit, L.A., “ACCESS 3—Approximation Concepts Code for Efficient Structural Synthesis—User’s Guide,” NASA CR-159260, September 1980.

    Google Scholar 

  46. Wilkinson, K., et al., “An Automated Procedure for Flutter and Strength Analysis and Optimization of Aerospace Vehicles, Vol. I—Theory, Vol. II—Program User’s Manual,” AFFDL-TR-75-137, 1975.

    Google Scholar 

  47. Venkayya, V.B., and Tischler, V.A., “OPSTAT-A Computer Program for Optimal Design of Structures Subjected to Static Loads,” AFFDL-TR-79-67,1979.

    Google Scholar 

  48. Khot, N.S., “Computer Program (OPTCOMP) for Optimization of Composite Structures for Minimum Weight Design,” AFFDL-TR-76-149, 1977.

    Google Scholar 

  49. Gellatly, R.A., Dupree, D.M., and Berke, L., “OPTIMUM II: A MAGIC Compatible Large Scale Automated Minimum Weight Design Program,” AFFDL-TR-74-97, Vols. I and II, 1974.

    Google Scholar 

  50. Isakson, G., and Pardo, H., “ASOP-3: A Program for the Minimum Weight Design of Structures Subjected to Strength and Deflection Constraints,” AFFDL-TR-76-157, 1976.

    Google Scholar 

  51. Bartholomew, P., and Wellen, H.K., “Computer Aided Optimization of Aircraft Structures,” J. Aircraft, 27(12), pp. 1079–1086, 1990.

    Article  Google Scholar 

  52. Kiusalaas, J., and Reddy, G.B., “DESAP 2—A Structural Design Program with Stress and Buckling Constraints,” NASA CR-2797 to 2799, 1977.

    Google Scholar 

  53. Haftka, R.T., and Prasad, B., “Programs for Analysis and Resizing of Complex Structures,” Comput. Struct., 10, pp. 323–330, 1979.

    Article  MATH  Google Scholar 

  54. Sobieszczanski-Sobieski, J., and Rogers, J.L., Jr., “A Programming System for Research and Applications in Structural Optimization,” Int. Symposium on Optimum Structural Design, Tucson, Arizona, pp. 11-9-11-21, 1981.

    Google Scholar 

  55. Walsh, J.L., “Application of Mathematical Optimization Procedures to a Structural Model of a Large Finite-Element Wing,” NASA TM-87597, 1986.

    Google Scholar 

  56. Vanderplaats, G.N., “CONMIN-A Fortran Program for Constrained Function Minimization: User’s manual,” NASA TM X-62282, 1973.

    Google Scholar 

  57. Brama, T., “Applications of Structural Optimization Software in the Design Process,” in Computer Aided Optimum Design of Structures: Applications, (Eds, C. A. Brebbia and S. Hernandez), Computational Mechanics Publications, Springer-Verlag, 1989, pp. 13–21.

    Google Scholar 

  58. Neill, D.J., Johnson, E.H., and Canfield, R., “ASTROS—A Multidisciplinary Automated Structural Design Tool,” J. Aircraft, 27, 12, pp. 1021–1027, 1990.

    Article  Google Scholar 

  59. Atrek, E., “SHAPE: A Program for Shape Optimization of Continuum Structures,” in Computer Aided Optimum Design of Structures: Applications, (Eds, C. A. Brebbia and S. Hernandez), Computational Mechanics Publications, Springer-Verlag, 1989, pp. 135–144.

    Google Scholar 

  60. Hariran, M., Paeng, J.K., and Belsare, S., “STROPT—the Structural Optimization System,” Proceedings of the 7th International Conference on Vehicle Structural Mechanics, Detroit, MI, April 11–13, 1988, SAE, pp. 27–38.

    Google Scholar 

  61. Vanderplaats, G.N., Miura, H., Nagendra, G., and Wallerstein, D., “Optimization of Large Scale Structures using MSC/NASTRAN,” in Computer Aided Optimum Design of Structures: Applications, (Eds, C. A. Brebbia and S. Hernandez), Computational Mechanics Publications, Springer-Verlag, 1989, pp. 51–68.

    Google Scholar 

  62. Ward, P. and Cobb, W.G.C., “Application of I-DEAS Optimization for the Static and Dynamic Optimization of Engineering Structures,” in Computer Aided Optimum Design of Structures: Applications, (Eds, C. A. Brebbia and S. Hernandez), Computational Mechanics Publications, Springer-Verlag, 1989, pp. 33–50.

    Google Scholar 

  63. GENESIS User’s Manual (version 1.00), VMA Engineering, Goleta, California, September, 1991.

    Google Scholar 

  64. Vanderplaats, G.N., “ADS: A FORTRAN Program for Automated Design Synthesis”, VMA Engineering, Inc. Goleta, California, May 1985.

    Google Scholar 

  65. DOT User’s Manual (version 2.0B), VMA Engineering, Inc. Goleta, California, Sept. 1990.

    Google Scholar 

  66. DOC User’s manual (version 1.00), VMA Engineering, Inc. Goleta, California, March 1991.

    Google Scholar 

  67. Miura, H., and Schmit, L.A., Jr., “NEWSUMT—A Fortran Program for Inequality Constrained Function Minimization—User’s Guide,” NASA CR-159070, June, 1979.

    Google Scholar 

  68. Grandhi, R.V., Thareja, R., and Haftka, R.T., “NEWSUMT-A: A General Purpose Program for Constrained Optimization Using Constraint Approximations,” ASME Journal of Mechanisms, Transmissions and Automation in Design, 107, pp. 94–99, 1985.

    Article  Google Scholar 

  69. Arora, J.S. and Tseng, C.H., “User Manual for IDESIGN: Version 3.5”, Optimal Design Laboratory, College of Engineering, The University of Iowa, Iowa City, 1987

    Google Scholar 

  70. Fleury, C., and Schmit, L.A. Jr., “Dual Methods and Approximation Concepts in Structural Synthesis,” NASA CR-3226, December, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haftka, R.T., Gürdal, Z. (1992). Aspects of The Optimization Process in Practice. In: Elements of Structural Optimization. Solid Mechanics And Its Applications, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2550-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2550-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1505-6

  • Online ISBN: 978-94-011-2550-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics