Skip to main content

Theoretical Study of the Catalyzed Hydration of CO2 by Carbonic Anhydrase: A Brief Overview.

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 368))

Abstract

The catalytic cycle of the hydration of CO2 by the Carbonic Anhydrase enzyme has been studied by means of ab initio calculations. Environmental effects have been taken into account by a continuum model. All the four steps of the catalytic mechanism have been studied. It is shown that the two different mechanisms proposed for the CO2 hydration (step 3) can be competitive if a more detailed description of the active site is made. The inclusion of environmental effects turns out to be essential to understand the HCO -3 release and the water binding (step 4). The problem of modelling enzymatic reactions is discussed.

A contribution from the “Grup de Química Quàntica de l‘Institut d‘Estudis Catalans“

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.H. Prince and P.R. Woolley, J. Chem. Soc. 1972, Dalton Trans., 1548–1554.

    Google Scholar 

  2. T.J. Williams and R.W. Henkens, Biochemistry 1985, 24, 2459–2462.

    Article  CAS  Google Scholar 

  3. A.C. Sen, C.K. Tu, H. Thomas, G.C. Wynns, and D.N. Silverman, in “Zinc Enzymes” p 329–339, I. Bertini, C. Luchinat, W. Maret and M. Zeppezauer, Eds.; Birkhäuser Boston, 1986; Inc., Vol. I.

    Google Scholar 

  4. D.N. Silverman and S. Lindskog, Ace. Chem. Res. 1988, 21, 30–36.

    Article  CAS  Google Scholar 

  5. P. Woolley, Nature 1975, 258, 677–682.

    Article  CAS  Google Scholar 

  6. I. Bertini and C. Luchinat, Ace. Chem. Res. 1983, 16, 272–279.

    Article  CAS  Google Scholar 

  7. Y. Pocker and T.L. Deits, J. Am. Chem. Soc. 1982, 104, 2424–2434.

    Article  CAS  Google Scholar 

  8. K.K. Kannan, M. Petef, K. Fridborg, S. Lövgren, A. Ohlsson and M. Petef, Proc. Natl. Acad. Sci. USA 1975, 72, 51.

    Article  CAS  Google Scholar 

  9. K.K. Kannan, M. Petef, K. Fridborg, H. Cid-Dresdner and S. Lovgren, FEBS Lett. 1977, 73, 115.

    Article  CAS  Google Scholar 

  10. A. Liljas, K.K. Kannan, P.-C. Bergsten, I. Waara, K. Fridborg, B. Strandberg, U. Carlbom, L. Järup, S. Lövgren and M. Petef, Nature New Biol. 1972, 235, 131.

    CAS  Google Scholar 

  11. E.A. Eriksson, T.A. Jones and A. Liljas, in “Zinc Enzymes” p 317–328, I. Bertini, C. Luchinat, W. Maret and M. Zeppezauer, Eds.; Birkhauser Boston, 1986; Inc., Vol. I.

    Google Scholar 

  12. Y. Pocker and J.T. Stone, J. Am. Chem. Soc. 1965, 87, 5497–5498.

    Article  CAS  Google Scholar 

  13. J.H. Coates, G.J. Gentle and S.F. Lincoln, Nature 1974, 249, 773–775.

    Article  CAS  Google Scholar 

  14. E. Kimura, T. Koike and K. Toriumi, Inorg. Chem. 1988, 27, 3687–3688.

    Article  CAS  Google Scholar 

  15. D.D. Perrin, J. Chem. Soc. 1962, 4500–4502.

    Google Scholar 

  16. J. Chin and X. Zou, J. Am. Chem. Soc. 1984, 106, 3687–3688.

    Article  CAS  Google Scholar 

  17. E.T. Kaiser and K.-W Lo, J. Am. Chem. Soc. 1969, 91, 4912–4918.

    Article  CAS  Google Scholar 

  18. R.P. Davis, J. Am. Chem. Soc. 1959, 81, 5674–5678.

    Article  CAS  Google Scholar 

  19. Y. Pocker and N. Janjić, J. Am. Chem. Soc. 1989, 111, 731–733.

    Article  CAS  Google Scholar 

  20. D.N. Silverman and C.K. Tu, J. Am. Chem. Soc. 1975, 97, 2263–2269.

    Article  CAS  Google Scholar 

  21. Y. Pocker and C.H. Miao, Biochemistry 1987, 26, 8481–8486.

    Article  CAS  Google Scholar 

  22. H. Steiner, B.-H. Jonsson and S. Lindskog, Eur. J. Biochem. 1975, 59, 253–259.

    Article  CAS  Google Scholar 

  23. K.M. Merz, Jr., R. Hoffmann and M.J.S. Dewar, J. Am. Chem. Soc. 1989, 111, 5636–5649.

    Article  CAS  Google Scholar 

  24. K.S. Venkatasubban and D.N. Silverman, Biochemistry 1980, 19, 4984–4989.

    Article  CAS  Google Scholar 

  25. J.-Y. Liang and W.N. Lipscomb, Biochemistry 1988, 27, 8676–8682.

    Article  CAS  Google Scholar 

  26. M.E. Riepe and J.H. Wang, J. Biol. Chem. 1968, 243, 2779–2787.

    CAS  Google Scholar 

  27. I. Bertini, E. Borghi and C. Luchinat, J. Am. Chem. Soc. 1979, 101, 7069–7071.

    Article  CAS  Google Scholar 

  28. R.H. Prince and P.R. Woolley, Angew. Chem. Int. Ed. Engl. 1972, 11, 408–417.

    Article  CAS  Google Scholar 

  29. Henkens, R.W.; Merrill, S.P.; Williams, T.J., Ann. New York Acad. Sci. 1984, 143, 429.

    Google Scholar 

  30. A. Pullman and D. Demoulin, Int. J. Quantum Chem. 1979, 16, 641–653.

    Article  CAS  Google Scholar 

  31. J.-Y. Liang and W.N. Lipscomb, Biochemistry 1987, 26, 5293–5301.

    Article  CAS  Google Scholar 

  32. O. Jacob, R. Cardenas and O. Tapia, J. Am. Chem. Soc. 1990, 112, 8692–8705.

    Article  CAS  Google Scholar 

  33. Krauss, M. and Garmer, D.R., J. Am. Chem. Soc. 1991, 113, 6426.

    Article  CAS  Google Scholar 

  34. K.M. Merz, Jr., J. Am. Chem. Soc. 1991, 113, 406–411.

    Article  CAS  Google Scholar 

  35. J.J. Led and E. Neesgaard, Biochemistry 1987, 26, 183.

    Article  CAS  Google Scholar 

  36. W.N. Lipscomb, Ann. Rev. Biochem.. 1983, 52, 17.

    Article  CAS  Google Scholar 

  37. S. Lindskog, in “Zinc Enzymes” p. 77, T.G. Spiro, Ed.; Wiley, New York, 1983.

    Google Scholar 

  38. Y. Pocker and T.L. Deits, J. Am. Chem. Soc. 1983, 105, 980–986.

    Article  CAS  Google Scholar 

  39. I. Simonsson, B.-H. Jonsson and S. Lindskog, Eur. J. Biochem.. 1979, 93, 409–417.

    Article  CAS  Google Scholar 

  40. J.-Y. Liang and W.N. Lipscomb, Int. J. Quantum Chem. 1989, 36, 299–312.

    Article  CAS  Google Scholar 

  41. P.H. Haffner and J.E. Coleman, J. Biol. Chem. 1975, 250, 996–1005.

    CAS  Google Scholar 

  42. Y. Nakacho, T. Misawa, T. Fujiwara, A. Wakawars and K. Tomita, Bull. Soc. Chem. Jpn. 1976, 49, 595–599.

    Article  CAS  Google Scholar 

  43. H. Grewe, M.R. Udupa and B. Krebs, Inorg. Chim. Acta 1982, 63, 119–124.

    Article  CAS  Google Scholar 

  44. Y. Kai, M. Morita, N. Yasuoka and N. Kasai, Bull. Soc. Chem. Jpn. 1985, 58, 1631–1635.

    Article  CAS  Google Scholar 

  45. K. Takahashi, Y. Nishida and S. Kida, Bull. Soc. Chem. Jpn. 1984, 57, 2628–2633.

    Article  CAS  Google Scholar 

  46. A. Bencini, A. Bianchi, E. Garcia-España, S. Mangani, M. Micheloni, P. Orioli and P. Paoletti, Inorg. Chem. 1988, 27, 1104–1107.

    Article  CAS  Google Scholar 

  47. C. Kirchner and B. Krebs, Inorg. Chem. 1987, 26, 3569–3576.

    Article  CAS  Google Scholar 

  48. A.F. Monzingo and B.W. Matthews, Biochemistry 1984, 23, 5724–5729.

    Article  CAS  Google Scholar 

  49. M. Kato and T. Ito, Inorg. Chem. 1985, 24, 509–514.

    Article  CAS  Google Scholar 

  50. P.G. Harrison, M.J. Begley, T. Kikabhai and F. Killer, J. Chem. Soc. Dalton Trans., 1986, 929–938.

    Google Scholar 

  51. L. Lebioda and B. Stec, J. Am. Chem. Soc. 1989, 111, 8511–8513.

    Article  CAS  Google Scholar 

  52. M.A. Holmes and B.W. Matthews, Biochemistry 1981, 20, 6912–6920.

    Article  CAS  Google Scholar 

  53. L.C. Kuo and M.W. Makinen, J. Biol. Chem. 1982, 257, 24–27.

    CAS  Google Scholar 

  54. E. Kimura, T. Shiota, T. Koike, M. Shiro and M. Kodama, J. Am. Chem. Soc. 1990, 112, 5805–5811.

    Article  CAS  Google Scholar 

  55. E. Kimura and T. Koike, Comments Inorg. Chem. 1991, 11, 285.

    Article  CAS  Google Scholar 

  56. R.G. Khalifah, in “Biophysics and Physiology of Carbon Dioxide” p. 206, C. Bauer, G. Gros, and H. Bartels, Eds.; Springer-Verlag New York, 1980.

    Google Scholar 

  57. C.C.J. Roothaan, Rev. Mod. Phys. 1951, 23, 69.

    Article  CAS  Google Scholar 

  58. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy and J.J.P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902–3909.

    Article  CAS  Google Scholar 

  59. M.J.S. Dewar and K.M. Merz, Jr., Organometallics 1988, 7, 522–524.

    Article  CAS  Google Scholar 

  60. J.Y. Choi, E.R. Davidson and I. Lee, J. Comp. Chem. 1988, 10, 163–175.

    Article  Google Scholar 

  61. C. Møller and M.S. Plesset, Phys. Rev. 1934, 46, 618.

    Article  Google Scholar 

  62. D. Demoulin and A. Pullman, Theoret. Chim. Acta 1978, 49, 161–181.

    Article  CAS  Google Scholar 

  63. A. Pullman, Ann. N. Y. Acad. Sci. 1981, 367, 340–355.

    Article  CAS  Google Scholar 

  64. H.B. Schlegel, J. Comp. Chem. 1982, 3, 214–218.

    Article  CAS  Google Scholar 

  65. J.S. Binkley, J.A. Pople and W.J. Hehre, J. Am. Chem. Soc. 1980, 102, 939–947.

    Article  CAS  Google Scholar 

  66. K.D. Dobbs and W.J. Hehre, J. Comp. Chem. 1987, 8, 861–879.

    Article  CAS  Google Scholar 

  67. W.J. Hehre, R.F. Stewart and J.A. Pople, J. Chem. Phys. 1969, 51, 2657.

    Article  CAS  Google Scholar 

  68. S. Miertuš, E. Scrocco, and J. Tomasi, Chem. Phys. 1981, 55, 117–129.

    Article  Google Scholar 

  69. J.L. Pascual-Ahuir, E. Silla, J. Tomasi, and R. Bonaccorsi, J. Comp. Chem. 1987, 8, 778–787.

    Article  CAS  Google Scholar 

  70. F. Floris and J. Tomasi, J. Comp. Chem. 1989, 10, 616–627.

    Article  CAS  Google Scholar 

  71. The sphere radii used for atoms were 20% larger than the van der Waals (or ionic) radii (H, 1.44 Å; C, 1.94 Å; N, 1.80 Å; O, 1.68 Å; Zn, 0.84 Å). T=298.15 K.

    Google Scholar 

  72. R.A. Pierotti, Chem. Rev. 1976, 76, 717.

    Article  CAS  Google Scholar 

  73. M.J. Frisch, J.S. Binkley, H.B. Schlegel, K. Raghavachari, C.F. Melius, R.L. Martin, J.J.P. Stewart, F.W. Bobrowicz, C.M. Rohlfing, L.R. Kahn, D.F. Defrees, R. Seeger, R.A. Whiteside, D.J. Fox, E.M. Fleider and J.A. Pople., GAUSSIAN 86, Carniege Mellon University, Pittsburgh, PA, 1984.

    Google Scholar 

  74. M.R. Peterson and R.A. Poirier, Program MONSTERGAUSS, Department of Chemistry, University of Toronto, 1981, Ontario, Canada.

    Google Scholar 

  75. M.J.S. Dewar, J.J.P. Stewart and M. Eggar, Program n. 506, QCPE, Department of Chemistry, Indiana University, Bloomington, Indiana, USA.

    Google Scholar 

  76. G. Alagona and C. Ghio, in “The enzyme catalysis process” pp. 345–355, A. Cooper, J.L. Houben and L.C. Chien, Eds.; Plenum Publishing Corporation, 1989.

    Google Scholar 

  77. A. Vedani, D.W. Huhta and S.P. Jacober, J. Am. Chem. Soc. 1989, 111, 4075–4081.

    Article  CAS  Google Scholar 

  78. A. Vedani and D.W. Huhta, J. Am. Chem. Soc. 1990, 112, 4759–4767.

    Article  CAS  Google Scholar 

  79. A. Vedani, J. Comp. Chem. 1988, 9, 269–280.

    Article  CAS  Google Scholar 

  80. J.-Y. Liang and W.N. Lipscomb, Biochemistry 1989, 28, 9724–9733.

    Article  CAS  Google Scholar 

  81. I. Bertini, C. Luchinat, M. Rosi, A. Sgamellotti and F. Tarantelli, Inorg. Chem. 1990, 29, 1460–1463.

    Article  CAS  Google Scholar 

  82. A. Vedani, M. Dobler and J.D. Dunitz, J. Comp. Chem. 1986, 7, 701–710.

    Article  CAS  Google Scholar 

  83. P.G. De Benedetti, M.C. Menziani, M. Cocchi and G. Frassineti, J. Mol. Struct. (THEOCHEM) 1989, 183, 393–401.

    Article  Google Scholar 

  84. M.C. Menziani, C.A. Reynolds and W.G. Richards, J. Chem. Soc. Chem. Commun., 1989, 853–855.

    Google Scholar 

  85. J.C.L. Reynolds, K.F. Cooke and S.H. Northrup, J. Phys. Chem. 1990, 94, 985–991.

    Article  CAS  Google Scholar 

  86. A. Lledös and J. Bertrán, J. Mol. Struct. (THEOCHEM) 1985, 120, 73–78.

    Article  Google Scholar 

  87. A. Lledös and J. Bertrán, J. Mol. Struct. (THEOCHEM) 1984, 107, 233–238.

    Article  Google Scholar 

  88. M.T. Nguyen and T.-K. Ha, J. Am. Chem. Soc. 1984, 106, 599–602.

    Article  CAS  Google Scholar 

  89. A. Lledös and J. Bertrán, Tetrahedron Lett. 1981, 22, 75.

    Article  Google Scholar 

  90. A. Lledös and J. Bertrán, J. Mol. Struct. (THEOCHEM) 1984, 107, 233.

    Article  Google Scholar 

  91. O.N. Ventura, A. Lledös, R. Bonaccorsi, J. Bertrán and J. Tomasi, Theoret. Chim. Acta 1987, 72, 175.

    Article  CAS  Google Scholar 

  92. P. Ruelle, U.W. Kesselring and H. Nam-Tram, J. Mol. Struct. (THEOCHEM) 1985, 124, 41.

    Article  Google Scholar 

  93. P. Ruelle, U.W. Kesselring and H. Nam-Tram, J. Am. Chem. Soc. 1986, 108, 371.

    Article  CAS  Google Scholar 

  94. P. Ruelle, Chem. Phys. 1986, 110, 263.

    Article  CAS  Google Scholar 

  95. P. Ruelle, J. Compo Chem. 1987, 8, 158.

    Article  CAS  Google Scholar 

  96. P. Ruelle, J. Am. Chem. Soc. 1987, 109, 1722.

    Article  CAS  Google Scholar 

  97. M.T. Nguyen and P. Ruelle, Chem. Phys. Lett. 1987, 198, 486.

    Article  Google Scholar 

  98. T. Oie, G.H. Loew, S.K. Burt and R.D. MacElroy, J. Am. Chem. Soc. 1983, 105, 2221.

    Article  CAS  Google Scholar 

  99. J. Bertrán, in “New Theoretical Concepts for Understanding Organic Reactions”. p. 231, J. Bertrán and I.G. Csizmadia, Eds., Kluwer Academic Press, New York, 1989.

    Google Scholar 

  100. J.L. Andrés, A. Lledös, M. Duran and J. Bertrán, Chem. Phys. Lett. 1988, 159, 82–86.

    Article  Google Scholar 

  101. M. Solà, A. Lledös, M. Duran and J. Bertrán, Int. J. Quantum Chem., in press.

    Google Scholar 

  102. M. Solà, A. Lledös, M. Duran, J. Bertrán and J.L.M. Abboud, J. Am. Chem. Soc. 1991, 113, 2873–2879.

    Article  Google Scholar 

  103. J. Tomasi, G. Alagona, R. Bonaccorsi and C. Ghio, in “Modelling of structures and properties of molecules” pp. 330–355, E. Horwood, Ed.; Ellis Horwood Ltd., Chichester, England, 1987.

    Google Scholar 

  104. L.I. Krishtalik and V.V. Topolev, Mol. Biol. (Mos.) 1984, 18, 721.

    Google Scholar 

  105. L.I. Krishtalik, Mol. Biol. (Mos.) 1974, 8, 75.

    CAS  Google Scholar 

  106. L.I. Krishtalik, J. Theor. Biol 1985, 112, 251.

    Article  CAS  Google Scholar 

  107. L.I. Krishtalik, J. Theor. Biol 1980, 86, 757.

    Article  CAS  Google Scholar 

  108. G.A. Melcier, Jr., J.P. Dijkman, R. Osman and H. Weinstein, in “Quantum Chemistry: Basic Aspects, Actual trends”. Amsterdam, R. Carbó Ed., Elsevier Scientific Publ, 1989.

    Google Scholar 

  109. O. Tapia and G. Johannin, J. Chem. Phys. 1981, 75, 3624–3635.

    Article  CAS  Google Scholar 

  110. B.T. Thole and P.T. van Duijnen, Theoret. Chim. Acta 1983, 63, 209–221.

    Article  CAS  Google Scholar 

  111. A. Warshel, Biochemistry 1981, 20, 3167–3177.

    Article  CAS  Google Scholar 

  112. J.A. McCammon and S.C. Harvey, “Dynamics of Proteins and Nucleic Acids” 1987, Cambridge University Press, Cambridge.

    Google Scholar 

  113. A. Warshel, S.T. Rusell and F. Sussman, Isr. J. Chem. 1987, 27, 217.

    Google Scholar 

  114. The lines plotted in all the electron isodensity maps presented in this work, correspond to the values of 0.0001, 0.001, 0.01, 0.02, 0.03, 0.04, 0.08, 0.1, 0.12, 0.15, 0.18, 0.24, 0.30, 0.37, 0.40, 0.60, 0.80, 1.0, 1.5, 10., and 100. au.

    Google Scholar 

  115. R.F.W. Bader, Acc. Chem. Res. 1985, 18, 9–15.

    Article  CAS  Google Scholar 

  116. M. Solà, A. Lledós, M. Duran and J. Bertrán, J. Am. Chem. Soc. 1991, in press.

    Google Scholar 

  117. M. Solà, A. Lledós, M. Duran and J. Bertrán, Inorg. Chem. 1991, 30, 2523.

    Article  Google Scholar 

  118. C. Giessner-Prettre and O. Jacob, J. Comput.-Aided Mol. Design 1989, 3, 23–37.

    Article  CAS  Google Scholar 

  119. Y. Pocker and T.L. Deits, J. Am. Chem. Soc. 1981, 103, 3949–3951.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sola, M., Lledos, A., Duran, M., Bertran, J. (1992). Theoretical Study of the Catalyzed Hydration of CO2 by Carbonic Anhydrase: A Brief Overview.. In: Bertrán, J. (eds) Molecular Aspects of Biotechnology: Computational Models and Theories. NATO ASI Series, vol 368. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2538-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2538-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1728-9

  • Online ISBN: 978-94-011-2538-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics