Skip to main content

Dynamic Brillouin Processes in Fibers

  • Chapter
Guided Wave Nonlinear Optics

Part of the book series: NATO ASI Series ((NSSE,volume 214))

Abstract

The influence of the finite acoustic damping time on Stimulated Brillouin Scattering (SBS) has recently been experimentally emphasized in optical fibers (chaos,SBS-solitons, etc.). This paper reviews those characteristic dynamical features, and sorts out the situation where the popular intensity model of SBS is sufficient from those where a coherent 3-wave model is absolutely needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. In soviet literature, stimulated Brillouin scattering is often referred to as “stimulated MandeVstam-Brillouin scattering” (SMBS).

    Google Scholar 

  2. E.P. Ippen and R.H. Stolen, “Stimulated Brillouin scattering in optical fibers”,Appl. Phys. Lett, 21, 11 (1972).

    Article  Google Scholar 

  3. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber”,J. Opt. Comm., 4, 1 (1983).

    Article  Google Scholar 

  4. D. Pesme, G. Laval and R. Pellat, “Parametric instabilities in bounded plasmas”,Phys. Rev. Lett., 31, 4 (1973).

    Article  Google Scholar 

  5. W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy”, in Laser Handbook, p 1077, Arrechi & Schulz-Dubois eds, North Holland, Amsterdam (1972).

    Google Scholar 

  6. D. J. Kaup, A.Reiman and A. Bers, “Space-time evolution of non-linear three-wave interaction : I -Interaction in a homogeneous medium”, Rev. Mod. Phys., 51, 275 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Botineau, C. Leycuras, C. Montes and E. Picholle, “Stabilization of a stimulated Brillouin fiber ring laser by strong pump modulation”, J. Opt. Soc. Am. B, 6, 3, p 300 (1989).

    Article  ADS  Google Scholar 

  8. E.K. Moloney and H. Desuravire, “The effect of the Cargèse soleil and Mediterranean waves on the brain activity of the international physicists when accompanied by several disturbing effects”,NATO summer course in Nonlinear Guidedwave Optics, Cargèse aug. 1991.

    Google Scholar 

  9. T.C. Rich and D.A. Pinnow, “Evaluation of fiber optical waveguides using Brillouin spectroscopy”, Appl. Opt., 13, 6 (1974).

    Google Scholar 

  10. D. Heiman, D.S. Hamilton and R.W. Hellwarth, “Brillouin scattering measurements on optical glasses”, Phys. Rev. B, 19,12 (1979).

    Google Scholar 

  11. P.J. Thomas, N.L. Rowell, H.M. van Driel, and G.I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers”, Phys. Rev. B, 19, 10 (1979).

    Google Scholar 

  12. D. Cotter, “Transcient SBS in long single-mode fibers”,El. Lett., 18, 504 (1982).

    Article  Google Scholar 

  13. E. Lichtman and A.A. Friesman, “Stimulated Brillouin scattering excited by a multimode laser n single-mode optical fibers”, Opt. Comm., 64,6 (1987).

    Article  Google Scholar 

  14. S.M. Chttanvis, “Acoustic instability induced in compressible, transparent fluids by electrostrictive effects”, Opt. Lett., 15,14 (1990).

    Google Scholar 

  15. N.M. Kroll and P.L. Kelley, “Temporal and spatial gain in stimulated light scattering”, Phys. Rev. A, 4, 2 (1971).

    Article  ADS  Google Scholar 

  16. I.L. Fabelinski , “Stimulated Mandelstam-Brillouin process”,in Non-linear optics, vol. 1 of Quantum Electronics, A. Treatise, H. Rabin & C.L. Tang eds (Academic, New York, 1975).

    Google Scholar 

  17. R.K. Wehner and R. Klein, “Scattering of light by entropy fluctuations in dielectric crystals”, Physica, 62, 161 (1972).

    Article  ADS  Google Scholar 

  18. L. Brillouin, “Influence de la température sur l’élasticité d’un solide”, p 26,Mémorial des sciences mathématiques, Fasc. XCIX, Gauthier-Villars (Paris, 1940).

    Google Scholar 

  19. R.H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers”,IEEE J. Quant. El., QE-15, 10 (1979).

    Google Scholar 

  20. Both GeO2, P2O5, TiO2, B2O3 and F2 improve the acoustical index of silica; Al2O3 lowers it

    Google Scholar 

  21. C.K. Jen, A. Safaai-Jazi, and G.W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides”, IEEE trans, on Ultrasonics, UFFC-33, 6 (1986).

    Google Scholar 

  22. N. Shibata, K. Okamoto and Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers”, J. Opt. Soc. Am. B, 6, 6, 1167 (1989).

    Article  ADS  Google Scholar 

  23. R.M. Shelby, M.D. Levenson and P.W. Bayer, “Guided acoustic-wave Brillouin scattering”, Phys. Rev. B, 31, 8, p 5244 (1985). This experiment deals with spontaneous Brillouin scattering.

    Article  ADS  Google Scholar 

  24. P. St. J. Russel, D. Culverhouse and F. Farhi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre”, El. Lett., 26, 1195 (1990).

    Article  Google Scholar 

  25. C. Monies and J. Coste, “Optical turbulence in multiple stimulated Brillouin backscattering”, Laser and Part. Beams, 5, 2, p 405 (1987).

    Article  ADS  Google Scholar 

  26. V.N. Lugovoy and V.N. Streltsov, “Stimulated Raman radiation and stimulated Mandel’stam-Brillouin radiation in a laser resonator”, Optica Acta, 20, 3 (1973).

    Article  Google Scholar 

  27. C.L. Tang,“Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process”, J. Appl. Phys., 37, 2945 (1966).

    Article  ADS  Google Scholar 

  28. F.Y.F. Chiu and C.F.F.. Karney ,“Solution of the three-wave resonant equations with one wave heavily damped”, Physics of Fluids, 20, 10, p 1788 (1977).

    Google Scholar 

  29. R.W. Boyd, K. Rzazewski and P. Narum, “Noise initiation of stimulated Brillouin scattering”, Phys. Rev. A, 42, 9 (1990).

    Article  Google Scholar 

  30. C. Monies and A.M. Rubenchk, “Stimulated Brillouin limitation for transmission capacity in soliton-based optical-fiber communication”, to be published in J. Opt. Soc. Am. B.

    Google Scholar 

  31. R.G. Smith, “Optical power handling of low losses optical fibers as determined by stimulated Raman and Brillouin scattering”, Appl. Opt., 11,2489 (1972).

    Article  ADS  Google Scholar 

  32. N. Yoshizawa, T. Horiguchi and T. Kurashima, “Proposal for stimulated Brillouin scattering suppression by fibre cabling”, El. Lett, 27,12 (1991).

    Article  Google Scholar 

  33. A.R. Chraplyvy and R.W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems”, El. Lett., 22, 1084 (1986).

    Article  Google Scholar 

  34. J. Coste and C. Montes, “Asymptotic evolution of stimulated Brillouin scattering : Implications for optical fibers”, Phys. Rev. A, 34, 5, p 3940 (1986).

    Article  ADS  Google Scholar 

  35. D. Culverhouse, F. Farahi, C.N. Pannel and D.A. Jackson, “Potential of SBS as sensing mechanism for distributed temperature sensors”, El. Lett., 25, 14 (1989).

    Article  Google Scholar 

  36. F. Zarinetchi, S.P. Smith and S.Ezekiel, “SBS fiber-optic gyroscope”,Opt. Lett., 16, 4 (1991).

    Article  Google Scholar 

  37. R.H. Enns and I.P. Batra, “Saturation and depletion in stimulated light scattering”,Phys. Lett. (Netherlands), 28 a, 8, p 591 (1969).

    Article  Google Scholar 

  38. J. Botineau, C. Montes and E. Picholle, “Modes longitudinaux d’une cavité Brillouin en anneau”,Rapport d’activité du G.D.R. CNRS L.U.L.I. (1990). -to be published -

    Google Scholar 

  39. V.A. Gorbunov, “Formation and amplification of ultrashort optical pulses as a result of stimulated scattering in opposite directions”, Sov. J. Quant El, 14, 8, p 1066 (1984).

    Article  Google Scholar 

  40. C. Montes and R. Pellat, “Inertial response to nonstationnary stimulated Brillouin backscattering : Damage of optical and plasma fibers”, Phys. Rev. A, 36, 6 (1987).

    Article  Google Scholar 

  41. J.A. Armstrong and E. Courtens, “Exact solution of a π -pulse problem”,IEEE J. Quant. EL, QE-4 , p 411 (1968).

    Article  ADS  Google Scholar 

  42. S.F. Morozov, L.V. Pishanova, M.M. Sushchih and G.I. Freidman, “Formation and amplification of quasi-soliton pulses in head-on stimulated scattering”, Sov. J.Q.E., 8, 5 (1978).

    Google Scholar 

  43. O. Legrand and C. Montes , “Apparent quasi-solitons in stimulated Brillouin backscattering”, J. Phys. Coll. (Paris) , 50, C3–147 (1989).

    Google Scholar 

  44. E. Picholle, C. Montes, C. Leycuras, O. Legrand and J. Botineau,“Observation of dissipative superluminous solitons in a Brillouin fiber ring laser”, Phys. Rev. Lett., 66, 11 (1991).

    Article  Google Scholar 

  45. S.C.Chiu, “On the self-induced transparency effect of the three-wave resonance process”, J. Math Phys., 19, 168 (1978).

    Article  ADS  Google Scholar 

  46. S.L. Mc Call and E.L. Hahn,“Self-induced transparency”, Phys. Rev., 183, 457 (1969).

    Article  ADS  Google Scholar 

  47. K. Baumgartel, U. Motschmann and K. Sauer, “Self-pulsing at stimulated scattering processes”, Opt. Comm., 51,1, p 53 (1984).

    Article  ADS  Google Scholar 

  48. I. Bar-Joseph, A.A. Friesem, E. Lichtman and R.G. Waarts,“Steady and relaxation oscillations of SBS in single-mode optical fibers”, J. Opt. Soc. Am. B, 2, 1606 (1985).

    Article  ADS  Google Scholar 

  49. A. Johnstone, Weiping Lu, J.S. Uppal and R.G. Harrisson, “Sustained and bursting oscillations in SBS with external feedback in optical fibre”, Opt. Comm, 81, 3–4 (1991).

    Article  Google Scholar 

  50. D.C. Johnson, K.O. Hill and B.S. Kawasaki, “Brillouin optical-fiber ring oscillator design”, Radio Science, 12,519 (1977).

    Article  ADS  Google Scholar 

  51. S.P. Smith, F. Zarinetchi and S.E. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications”, Opt. Lett., 16, p 393 (1991).

    Article  ADS  Google Scholar 

  52. M. Douay, P. Bernage and P. Niay, “Estimation of the mean coherence time of stimulated Brillouin scattering in an optical fibre using unbalanced heterodyne interferometry”, Opt. Comm. 81, 3–4, p 231 (1990).

    ADS  Google Scholar 

  53. R.G. Harrison, J.S. Uppal, A. Johnstone and J.V. Moloney,“Evidence of chaotic stimulated Brillouin scattering in optical fibers”, Phys. Rev. Lett., 65, 2 (1990).

    Article  Google Scholar 

  54. C. Gu and P. Yeh,“Contradirectional nonlinear-optical Bragg scattering in Kerr media”, Opt. Lett., 16, 3 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Daniel B. Ostrowsky Raymond Reinisch

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Picholle, E. (1992). Dynamic Brillouin Processes in Fibers. In: Ostrowsky, D.B., Reinisch, R. (eds) Guided Wave Nonlinear Optics. NATO ASI Series, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2536-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2536-9_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5120-0

  • Online ISBN: 978-94-011-2536-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics