Skip to main content

Foaming and its Control in Bioprocesses

  • Chapter
Recent Advances in Biotechnology

Part of the book series: NATO ASI Series ((NSSE,volume 210))

Abstract

Control of foaming in bioprocesses presents a dilemna, since a highly surface active heterogeneous system has to be adequately aerated and agitated while the bioreaction is proceeding without interruption. This paper deals with mechanisms of foam formation and destruction, causes and effects of foaming in bioprocesses and different methods of foam destruction and prevension. Special emphasis is given to chemical antifoaming agents and to the determination of their efficiencies. Important criteria for the choice of a suitable antifoaming agent are discussed. It is concluded that foam suppression or collapse is a result of a fine balance between the effects of various surface active agents. Therefore, in choosing and employing an antifoaming agent, the aim, foam suppression or collapse, should be well defined and the interactions between biomedia and the antifoaming agent should be experimentally determined. Finally, a few suggestions for future research are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, I., Buchholz, H., Voigt, J., Wittler, R., and Schügerl, K. (1980,a). ‘Bubble Coalescence Behaviour in Biological Media: I. Hansenula Polymorpha Cultivation Broths’, Europ. J. Appl. Microbiol. Biotechnol. 9, 249260.

    Article  Google Scholar 

  • Adler, I, Diekmann, J., Hartke, W., Hecht, V., Rohn, F., and Schügerl, K. (1980, b) ‘Bubble Coalescence Behaviour in Biological Media: II. Effect of Antifoam Additives’, Europ. Appl. Microbiol. Biotechnol. 10, 171–186.

    Article  CAS  Google Scholar 

  • ‘The Atlas MLB System’, Atlas Chemical Industries, INC. Chemicals Division, Wilmington 99, Delaware, 1963.

    Google Scholar 

  • Berovic, M. and Cimerman, A. (1979) ‘Foaming in Submerged Citric Acid Fermentation on Beet Molasses’, Europ. J. Appl. Microbiol. Biotechnol., 7, 313–319.

    Article  CAS  Google Scholar 

  • Blackall, L. L., and Marshall, K. C. (1989) ‘The Mechanism of Stabilization of Actinomycete Foams and the Prevention of Foaming Under Laboratory Conditions’, Ind. Microbiol. 4, 181–188.

    Article  CAS  Google Scholar 

  • Bryant, J. (1970) ‘Anti-Foam Agents’, in N. Ribbon and R. Norris (eds.), Methods in Microbiology, pp. 187-203.

    Google Scholar 

  • Bumbullis, W., Kalischewski K., and Schügerl K. (1979) ‘Foam Behavior of Biological Media: II Salt Effects’, Europ. J. Microbiol. and Biotechnol. 7, 147–154.

    Article  CAS  Google Scholar 

  • Bumbullis, W., Kalischewski, K., and Schügerl, K. (1981) ‘Foam Behavior of Biological Media: VII. Surface Viscosity and Viscoelasticity’, Europ. J. Appl. Microbiol. Biotechnol. 11, 110–115.

    Article  CAS  Google Scholar 

  • Bumbullis, W. and Schügerl, K. (1979) ‘Foam Behavior of Biological Media: V Alcohol Effects’, Europ. J. Appl. Microbiol. Biotechnol. 8, 17–25.

    Article  CAS  Google Scholar 

  • Bumbullis, W. and Schügerl, K. (1981) ‘Foam Behaviour of Biological Media: VI. Foam Stability. Salt Effects’, Europ. J. Appl. Microbiol. Biotechnol. 11, 106–109.

    Article  CAS  Google Scholar 

  • Deindoerfer, F. and Gaden, E. (1955) ‘Effects of Liquid Physical Properties on Oxygen Transfer in Penicillin Fermentations’, Appl. Microbinl. 3, 253–257.

    CAS  Google Scholar 

  • Duitschaever, C.L., Buteau, C, and Kamel, B.S. (1988) ‘An Investigation on the Efficiency of Antifoaming Agents in Aerobic Fermentation’, Process Biochem., December, 163-165.

    Google Scholar 

  • Evans, J.I. and Hall, M.J. (1971) ‘Foams and Antifoams in Fermentation’, Process Biochem., April, 23-26.

    Google Scholar 

  • Furchner, B. and Mersmann, A. (1990) ‘Foam Breaking by High Speed Roters’, Chem. Eng. Technol. 13, 86–96.

    Article  CAS  Google Scholar 

  • Ghildyal, N.P., Lonsane, B.K. and Karanth, N.G. (1988) ‘Foam Control in Submerged Fermentation State of the Art’, Adv. in Appl. Microbiol. 33, 173–222.

    Article  CAS  Google Scholar 

  • Ghosh, D. and Pirt S.J. (1954) ‘Antifoam Agents in Aerobic Fermentations. Evaluation of the Activities of Antifoam Preparations’, Ren. Inst. Sup. di San. (En 7, 149–167.

    Google Scholar 

  • Hall, M.J., Dickinson, S.D., Pritchard, R. and Evans J.I. (1971) ‘Foams and Foam Control in Fermentation Processes’, Prog. Ind. Microbiol. 12, 171–231.

    Google Scholar 

  • Hancock, R.I. (1984) ‘Macromolecular Surfactants’ in Tadros, Th.F. (ed.), Surfactants, Academic Press, London.

    Google Scholar 

  • Kalischewski, K., Bumbullis, W. and Schügerl, K. (1979) ‘Foam Behaviour of Biological Media: I. Protein Foams’, Europ. J. Appl. Microbiol. Biotechnol. 7, 147.

    Article  Google Scholar 

  • Kawase, Y. and Moo-Young, M. (1987) ‘Influence of Antifoam Agents on Gas Hold-up and Mass Transfer in Bubble Columns with Non-Newtonian Fluids’, Appl. Microbiol. and Biotechnol. 27, 159–167.

    Article  CAS  Google Scholar 

  • Kloosterman IV, J., Van Wassenaar, P.D., Slater, N.K.H., and Baksteen, H. (1988) ‘The Effect of Anti-foam Agents on the Ultrafiltration of a Protease Solution’, Bioprocess Eng. 3, 181–185.

    Article  CAS  Google Scholar 

  • Komarova, A.B., Dubyaga, E.G., Gladkovskii, G.A., Ryzherhova, E.V. and Tarakanov, O.G. (1984) ‘Foam Formation Characteristics of Oligoethers, Copolymers of Ethylene and Propylene Oxides in Water’, Colloid J. 46, 511.

    Google Scholar 

  • Kosaric, N., Gray, N.C.C., Cairns, W.L. (1983) ‘Microbial Emulsifiers and De-emulsifiers’, in H.-J. Rehm and G. Reed (eds.), Biotechnology: A Comprehensive Treatise’. Volume 3, Verlag Chemie, Weinheim.

    Google Scholar 

  • Kotsaridu, M., Gehle, R., and Schügerl, K. (1983, a) ‘Foam Behaviour of Biological Media: IX. pH and Salt Effects’, Europ. J. Appl. Microbiol. Biotechnol. 18, 60–63.

    Article  CAS  Google Scholar 

  • Kotsaridu, M., Müller, B., Pfanz, V., and Schügerl, K. (1983, b) ‘Foam Behaviour of Biological Media: X. Influence of the Sterilization Conditions on the Foaminess of PPL Solutions’, Europ. J. Appl. Microbiol. Biotechnol. 17, 258–260.

    Article  Google Scholar 

  • Lee, J.C. and Tynan, K.J. (1988) ‘Antifoams and Their Effects on Coalescence Between Protein Stabilised Bubbles’, Bioreactor Fluid Dynamics, Conference paper, 353-77.

    Google Scholar 

  • Lengyel, Z.L. and Nyiri, L. (1966) ‘The Inhibitory Effect of CO2 on the Penicillin Biosynthesis’, Biotechnol. Bioeng. 8, 337–352.

    Article  CAS  Google Scholar 

  • Mancy, K.H., and Okun, D.A. (1960) ‘Effects of Surface Active Agents on Bubble Aeration’, Journal WPCF 32, April, 351-364.

    Google Scholar 

  • Mazumder, T.K., Nishio, N.B and Nagai S. (1985) ‘Carbon Monoxide Conversion to Formate by Methanosarcina Barkeri’, Biotechnol. Lett. 7, 377–382.

    Article  CAS  Google Scholar 

  • McGregor, W.C., Weaver, J.F., and Tansey, P.S. (1988) ‘Antifoam Effects on Ultrafiltration’, Biotechnol. Bioeng. 31, 385–389.

    Article  CAS  Google Scholar 

  • Möller, Von O. (1988) ‘Entgasung von Flüssigkeiten im Fliehkraftfeld-Das CENDEGA-Verfahren’, Fat Sci. Technol., 90, Mai, 529-531.

    Google Scholar 

  • Nyiri, L. and Lengyel, Z.L. (1965)’ studies on the Elimination of CO2 Gas Containing Foam Formed in Penicillium chrysogenum Deep Cultures’, Antibiot. Advan. Res., Prod. Clin. Use, Proc. Congr. Prague, 729-732.

    Google Scholar 

  • Ohkawa, A., Ueda, Y., and Sakai N. (1985) ‘Effect of Impeller Design on Foam Breaking and Power Characteristics of an Aerated Stirred Tank Fitted with a Rotating Disk Mechanical Foam-Breaker’, Process Biochem. August, 109116.

    Google Scholar 

  • Prins, A., and Van’t Riet, K. (1987) ‘Proteins and Surface Effects in Fermentation: Foam, Antifoam and Mass Transfer’, Trends in Biotechnol. 5, 296–301.

    Article  CAS  Google Scholar 

  • Schügerl, K. (1985) ‘Foam Formation, Foam Suppression, and the Effect of Foam on Growth’, Process Biochem., August, 122-123.

    Google Scholar 

  • Sukan, S. and Güray, A. and Vardar-Sukan, F. (1989) ‘Effects of Natural Oils and Surfactants on Cellulase Production and Activity’, J. Chem. Tech. Biotechnol. 46, 179–187.

    CAS  Google Scholar 

  • Sukan, S., Vardar, F., and Güray, A. (1984) ‘Evaluation of Natural Oils as Antifoam Agents in Bioconversion of Cellulosic Substrates’, Third Europ. Congr. Biotechnol. München, Germany, September, 10-15, 2, 203-211.

    Google Scholar 

  • Szarka, L. and Magyar, K. (1969) ‘The Foams of Fermentation Broths: I. Some Parameters of the Foaming of Fermentation Media’, Biotechnol. Bioeng. II, 701–710.

    Article  Google Scholar 

  • Thomas, A. and Winkler, M.A. (1977) ‘Foam Separation of Biological Materials’, in A. Wiseman (eds.), Topics in Enzyme and Fermentation Biotechnology, Ellis Horwood Ltd., Chichester, pp. 43–71.

    Google Scholar 

  • Uraizee, F. and Narsimhan, G. (1990) ‘Foam Fractionation of Proteins and Enzymes: II. Performance and Modelling’, Enzyme Microbial. Technol. 12, 315–316.

    Article  CAS  Google Scholar 

  • Van’t Riet, K., Prins, A. and Nieuwenhuijse, J.A. (1984)’ some Effects of Foam Control by Dispersed Natural Oil on Mass Transfer in a Bubble Column’ Third Europ. Congr. Biotechnol., München, Germany, Sept., 10-14. 3, 521-525.

    Google Scholar 

  • Vardar, F. and Lilly, M.D. (1982) ‘Effect of Cycling Dissolved Oxygen Concentrations on Product Formation in Penicillin Fermentations’, Eur. J. Appl. Microbiol. Biotechnol. 14, 203–211.

    Article  CAS  Google Scholar 

  • Vardar-Sukan, F. (1988, a) ‘Efficiency of Natural Oils as Antifoaming Agents in Bioprocesses’, J. Chem. Technol. Biotechnol. 43, 39-47. Vardar-Sukan, F. (1988, b) Unpublished Results.

    Google Scholar 

  • Vardar-Sukan, F. (1990) ‘Effects of Natural Oils on Oxygen Mass Transfer Rates in Biomedia’, Asia-Pasific Biochem. Eng. Conf.’ 90, Apr. 22-25, Seoul, Korea.

    Google Scholar 

  • Vardar-Sukan, F. (1991) ‘Effects of Natural Oils on Foam Collapse in Bioprocesses’ Biotechnol. Lett. 13(2), 107–112.

    Article  CAS  Google Scholar 

  • Viesturs, U.E., Kristapsons, M.Z., and Levitans, E.S. (1982) ‘Foam in Microbiological Processes’, Adv. Biochem. Eng. 21, 169–224.

    CAS  Google Scholar 

  • Vrana, D., and Seichert, L. (1988) ‘Cytomorphological Comparison of Mechanical and Chemical Defoaming of a Yeast Culture’, Folia Microbiol. 33, 144–147.

    Article  CAS  Google Scholar 

  • Zlokarnik, M. (1986) ‘Design and Scale-up of Mechanical Foam Breakers’, German Chem. Eng. 9, 314–320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vardar-Sukan, F. (1992). Foaming and its Control in Bioprocesses. In: Vardar-Sukan, F., Sukan, Åž.S. (eds) Recent Advances in Biotechnology. NATO ASI Series, vol 210. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2468-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2468-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5089-0

  • Online ISBN: 978-94-011-2468-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics