Advertisement

Assessment of myocardial viability with scintigraphic techniques and magnetic resonance imaging: new attainments?

  • Hubert W. Vliegen
  • Ernst E. van der Wall
  • Aaf F. M. Kuijper
  • Paul R. M. van Dijkman
  • Ernest K. J. Pauwels
  • Albert V. G. Bruschke
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 133)

Abstract

The ability to distinguish ischemic but still viable myocardium from irreversibly damaged myocardial areas, i.e. nonviable myocardium, is of paramount importance. Myocardial ischemia may lead to contractile dysfunction in localized areas and to an increased risk of future myocardial infarction. After revascularization of ischemic areas showing contractile dysfunction, normal function can be restored. Besides, improvement of left ventricular function improves prognosis and quality of life. Both scintigraphic techniques and magnetic resonance are quite capable of characterizing myocardial tissue and to determine tissue viability. Particularly, the thallium-201 reinjection approach has given a new impetus to ‘good old’ thallium-201 scintigraphy.

Keywords

Positron Emission Tomography Myocardial Viability Cine Magnetic Resonance Imaging Nonviable Myocardium Scintigraphic Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985; 72(6 suppl): V123–35.Google Scholar
  2. 2.
    Bodenheimer MM, Banka VS, Hermann GA, Trout RG, Pasdar H, Heifant RH. Reversible asynergy. Histopathology and electrocardiographic correlations in patients with coronary artery disease. Circulation 1976; 53: 792–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Chatterjee K. Swann HJC, Parmley WW, Sustaita H, Marcus HS, Matloff J. Influence of direct myocardial revascularisation on left ventricular asynergy and function in patients with coronary heart disease: with and without previous myocardial infarction. Circulation 1973; 47: 276–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Serruys PW, Simoons ML, Suryapranata H et al. Preservation of global and regional left ventricular function after early thrombolysis in acute myocardial infarction. J Am Coll Cardiol 1986; 7: 729–42.PubMedCrossRefGoogle Scholar
  5. 5.
    White HD, Norris RM, Brown MA et al. Effect of intravenous streptokinase on left ventricular function and early survival after acute myocardial infarction. N Engl J Med 1987; 317: 850–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982; 66: 1146–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Iskandrian AS, Heo J, Helfant RH, Segal BL. Chronic myocardial ischemia and left ventricular function. Ann Intern Med 1987; 107: 925–7.PubMedGoogle Scholar
  8. 8.
    Melin JA, Becker LC. Quantitative relationship between global left ventricular thallium uptake and blood flow: effects of propranolol, ouabain, dipyridamole, and coronary artery occlusion. J Nucl Med 1986; 27: 641–52.PubMedGoogle Scholar
  9. 9.
    Pohost FM, Zir LM, Moore RH, McKusick KA, Guiney TE, Beller GA. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 1977; 55: 294–302.PubMedCrossRefGoogle Scholar
  10. 10.
    Beller GA, Watson DD, Ackel P, Pohost GM. Time course of thallium-201 redistribution after transient myocardial ischemia. Circulation 1980; 61: 791–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Gibson RS, Watson DD, Taylor GJ et al. Prospective assessment of regional myocardial perfusion before and after coronary revascularisation surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1983; 1: 804–15.PubMedCrossRefGoogle Scholar
  12. 12.
    Iskandrian AS, Hakki AH, Kane SA, Goel IP, Mundth ED, Segal BL. Rest and redistribution thallium-201 myocardial scintigraphy to predict improvement in left ventricular function after coronary arterial bypass grafting. Am J Cardiol 1983; 51: 1312–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Tillisch J, Brunken R, Marshall R et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986; 314: 884–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Brunken R, Schwaiger M, Grover-McKay M, Phelps ME, Tillisch J, Schelbert HR. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defect. J Am Coll Cardiol 1987; 10: 557–67.PubMedCrossRefGoogle Scholar
  15. 15.
    Tamaki N, Yonekura Y, Yamashita K et al. Relation of left ventricular perfusion and wall motion with metabolic activity in persistent defects on thallium-201 tomography in healed myocardial infarction. Am J Cardiol 1988; 62: 202–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Kiat H, Berman DS, Maddahi J et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 1988; 12: 1456–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Moore CA, Cannon J, Watson DD, Kaul S, Beller GA. Thallium-201 kinetics in stunned myocardium characterized by severe postischemic systolic dysfunction. Circulation 1990; 81: 1622–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Melin JA, Wijns W, Keyeux A et al. Assessment of thallium-201 redistribution versus glucose uptake as predictors of viability after coronary occlusion and reperfusion. Circulation 1988; 77: 927–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Dilsizian V, Rocco TP, Freedman NMT, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990; 323: 141–6.CrossRefGoogle Scholar
  20. 20.
    Willerson JT, Parkey RW, Bonte FJ, Lewis SE, Corbett J, Buja LM. Pathophysiologic considerations and clinicopathological correlates of technetium-99m stannous pyrophosphate myocardial scintigraphy. Semin Nucl Med 1980; 10: 54–69.PubMedCrossRefGoogle Scholar
  21. 21.
    Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 1989; 32: 217–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Kobayashi K, Neely JR. Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 1979; 44: 166–75.PubMedCrossRefGoogle Scholar
  23. 23.
    Marshall RC, Tillisch JH, Phelps ME et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron emission computed tomography, 18F-labeled fluorodeoxyglucose, and N-13 ammonia. Circulation 1983; 67: 766–78.PubMedCrossRefGoogle Scholar
  24. 24.
    Tamaki N, Yonekura Y, Yamashita K et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989; 64: 860–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and energy balance of heart muscle. Ann Rev Physiol 1974; 36: 413–59.CrossRefGoogle Scholar
  26. 26.
    Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 1982; 23: 577–86.PubMedGoogle Scholar
  27. 27.
    Gropler RJ, Siegel BA, Lee KJ et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med 1990; 31: 1749–56.PubMedGoogle Scholar
  28. 28.
    Schwaiger M, Brunken R, Grover-McKay M et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 1986; 8: 800–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Bianco JA, Sebree L, Subramanian R, Hegge J, Tschudy J, Pyzalski R. C-14 deoxyglucose accumulation in myocardial infarction [abstract]. J Nucl Med 1990; 31 (Suppl): 835.Google Scholar
  30. 30.
    Buxton DB, Vaghaiwalla-Mody F, Krivokapich J, Phelps ME, Schelbert HR. Quantitative measurement of sustained metabolic abnormalities in reperfused canine myocardium [abstract]. J Nucl Med 1990; 31 (Suppl): 795.Google Scholar
  31. 31.
    Brown MA, Nohara R, Vered Z, Perez JE, Bergmann SR. The dependence of recovery of stunned myocardium on restoration of oxidative metabolism [abstract]. Circulation 1988; 78(4 Suppl III)v: III467.Google Scholar
  32. 32.
    Gropler RJ, Siegel BA, Perez JE et al. Recovery of contractile function in viable but dysfunctional myocardium is dependent upon maintenance of oxidative metabolism [abstract]. J Am Coll Cardiol 1990; 15(2 Suppl A): 203A.CrossRefGoogle Scholar
  33. 33.
    Gould KL, Yoshida K, Hess MJ, Haynie M, Mullani N, Smalling RW. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med 1991; 32: 1–9.PubMedGoogle Scholar
  34. 34.
    Van der Wall EE, De Roos A, editors. Magnetic resonance imaging in coronary artery disease. Dordrecht: Kluwer, 1991.Google Scholar
  35. 35.
    Herfkens RJ, Higgins CB, Hricak H et al. Nuclear magnetic resonance imaging of the cardiovascular system: normal and pathologic findings. Radiology 1983; 147: 749–59.PubMedGoogle Scholar
  36. 36.
    Brown JJ, Higgins CB. Myocardial paramagnetic contrast agents for MR imaging. AJR Am J Rontgenol 1988; 151: 865–71.Google Scholar
  37. 37.
    Buser PT, Auffermann W, Holt WW et al. Noninvasive evaluation of global left ventricular function with use of cine nuclear magnetic resonance. J Am Coll Cardiol 1989; 13:1294–300.PubMedCrossRefGoogle Scholar
  38. 38.
    Pettigrew RI. Dynamic cardiac MR imaging. iTechniques and applications. Radiol Clin North Am 1989; 27: 1183–203.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Hubert W. Vliegen
  • Ernst E. van der Wall
  • Aaf F. M. Kuijper
  • Paul R. M. van Dijkman
  • Ernest K. J. Pauwels
  • Albert V. G. Bruschke

There are no affiliations available

Personalised recommendations