Assessment of myocardial fatty acid metabolism with carbon-11 palmitate

  • René Lerch
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 133)


The positron emitting radionuclide carbon-11 allows the labeling of fatty acids without alteration to their molecular structure. Accordingly, the labeled fatty acid is taken up by the myocardium and metabolized in proportion to the unlabeled circulating counterpart. The availability of a true tracer of fatty acid metabolism combined with the quantitative capabilities positron imaging represent the framework for the noninvasive assessment of regional fatty acid metabolism with positron emission tomography (PET) [1-3]. Furthermore, the short half-life of carbon-11 (half-life 20.4 minutes) enables sequential evaluation of metabolism which is important if the method is used to study transient metabolic alterations or to monitor the effect of a therapeutic intervention on regional metabolism. These advantages of PET over the approaches using single photon emitting radioiodinated fatty acids have to be weighed against the higher costs involved in both the logistics required for on-site cyclotron-production of short-lived isotopes and the ensuing radiochemistry.


Positron Emission Tomography Fatty Acid Oxidation Myocardial Fatty Acid Canine Myocardium Myocardial Fatty Acid Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergmann SR, Fox KA, Geltman EM, Sobel BE. Positron emission tomography of the heart. Prog Cardiovasc Dis 1985; 28: 165–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Bergmann SR. Clinical applications of assessments of myocardial substrate utilization with positron emission tomography. Mol Cell Biochem 1989; 88: 201–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Schwaiger M, Wolpers HG. Advances in the assessment of myocardial-metabolism by positron emission tomography. Coronary Artery Dis 1990; 1: 547–55.CrossRefGoogle Scholar
  4. 4.
    Weiss ES, Hoffmann EJ, Phelps ME et al. External detection and visualization of myocardial ischemia with 11C-substrates in vitro and in vivo. Circ Res 1976; 39: 24–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Welch MJ, Dence CS, Marshall DR, Kilbourn MR. Remote system for production of carbon-11 labeled palmitic acid. J Label Compounds Radiopharm 1983; 20: 1087–95.CrossRefGoogle Scholar
  6. 6.
    Vasdev SC, Kako KJ. Incorporation of fatty acids into rat heart lipids. In vivo and in vitro studies. J Mol Cell Cardiol 1977; 9: 617–31.CrossRefGoogle Scholar
  7. 7.
    Carlsten A, Hallgren B, Jagenburg R, Svanborg A, Werko L. Myocardial arteriovenous differences of individual free fatty acids in healthy human individuals. Metabolism 1963; 12: 1063–71.PubMedGoogle Scholar
  8. 8.
    Neely JR, Rovetto MJ, Oram JF. Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis 1972; 15: 289–329.PubMedCrossRefGoogle Scholar
  9. 9.
    Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 1981; 23: 321–36.PubMedCrossRefGoogle Scholar
  10. 10.
    Fox KA, Abendschein DR, Ambos HD, Sobel BE, Bergmann SR. Efflux of metabolized and nonmetabolized fatty acid from canine myocardium. Implications for quantifying myocardial metabolism tomographically. Circ Res 1985; 57: 232–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Lerch RA, Ambos HD, Bergmann SR, Welch MJ, Ter-Pogossian MM, Sobel BE. Localization of viable, ischemic myocardium by positron-emission tomography with 11C-palmitate. Circulation 1981; 64: 689–99.PubMedCrossRefGoogle Scholar
  12. 12.
    Lerch RA, Bergmann SR, Ambos HD, Welch MJ, Ter-Pogossian MM, Sobel BE. Effect of flow-independent reduction of metabolism on regional myocardial clearance of 11C-palmitate. Circulation 1982; 65: 731–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Schön HR, Schelbert HR, Robinson G et al. C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography. I. Kinetics of C-11 palmitic acid in normal myocardium. Am Heart J 1981; 103: 532–47.Google Scholar
  14. 14.
    Schelbert HR, Henze E, Keen R et al. C-11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography. IV. In vivo evaluation of acute demand-induced ischemia in dogs. Am Heart J 1983; 106: 736–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Schwaiger M, Fishbein MC, Block M et al. Metabolic and ultrastructural abnormalities during ischemia in canine myocardium: noninvasive assessment by positron emission tomography. J Mol Cell Cardiol 1987; 19: 259–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Wyns W, Schwaiger M, Huang SC et al. Effects of inhibition of fatty acid oxidation on myocardial kinetics of 11C-labeled palmitate. Circ Res 1989; 65: 1787–97.PubMedCrossRefGoogle Scholar
  17. 17.
    Trach V, Buschmans-Denkel E, Schaper W. Relation between lipolysis and glycolysis during ischemia in the isolated rat heart. Basic Res Cardiol 1986; 81: 454–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Weiss ES, Ahmed SA, Welch MJ, Williamson JR, Ter-Pogossian MM, Sobel BE. Quantification of infarction in cross sections of canine myocardium in vivo with positron emission transaxial tomography and 11C-palmitate. Circulation 1977; 55: 66–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Bergmann SR, Lerch RA, Fox KA et al. Temporal dependence of beneficial effects of coronary thrombolysis characterized by positron tomography. Am J Med 1982; 73: 573–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Jennings RB, Reimer KA. Factors involved in salvaging ischemic myocardium: effect of reperfusion of arterial blood. Circulation 1983; 68 (2 Suppl): 125–36.Google Scholar
  21. 21.
    Görge G, Chatelain P, Schaper J, Lerch R. Effect of increasing degrees of ischemic injury on myocardial oxidative metabolism early after reperfusion in isolated rat hearts. Circ Res 1991; 68: 1681–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Rosamond TL, Abendschein DR, Sobel BE, Bergmann SR, Fox KA. Metabolic fate of radiolabeled palmitate in ischemic canine myocardium: implications for positron emission tomography. J Nucl Med 1987; 28: 1322–9.PubMedGoogle Scholar
  23. 23.
    Schelbert HR, Henze E, Schon HR, Keen R, Hansen H, Selin C et al. C-11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. III. In vivo demonstration of the effects of substrate availability on myocardial metabolism. Am Heart J 1983; 105: 492–504.Google Scholar
  24. 24.
    Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR. Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 1978; 253: 4305–9.PubMedGoogle Scholar
  25. 25.
    Schwaiger M, Schelbert HR, Keen R et al. Retention and clearance of C-11 palmitic acid in ischemic and reperfused canine myocardium. J Am Coll Cardiol 1985; 6: 311–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Schwaiger M, Schelbert HR, Ellison D et al. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 1985; 6: 336–47.PubMedCrossRefGoogle Scholar
  27. 27.
    Lopaschuk GD, Spafford MA, Davies NJ, Wall SR. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 1990; 66: 546–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 1988; 62: 535–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Ter-Pogossian MM, Klein MS, Markham J, Roberts R, Sobel BE. Regional assessment of myocardial metabolic integrity in vivo by positron-emission tomography with 11C-labeled palmitate. Circulation 1980; 61: 242–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Geltman EM, Smith JL, Beecher D, Ludbrook PA, Ter-Pogossian MM, Sobel BE. Altered regional myocardial metabolism in congestive cardiomyopathy detected by positron tomography. Am J Med 1983; 74: 773–85.PubMedCrossRefGoogle Scholar
  31. 31.
    Grover-McKay M, Schelbert HR, Schwaiger M et al. Identification of impaired metabolic reserve by atrial pacing in patients with significant coronary artery stenosis. Circulation 1986; 74: 281–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Schelbert HR, Henze E, Sochor H et al. Effects of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am Heart J 1986; 111: 1055–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Geltman EM, Kaiserauer S, Walsh MN, Ehsani AA. Effects of maximal and submaximal exercise on myocardial 11C-palmitate clearance assessed with positron emission tomography [abstract]. J Am Coll Cardiol 1988; 11 (2 Suppl A): 211A.Google Scholar
  34. 34.
    Keul J, Doll E, Steim H, Homburger H, Kern H, Reindell H. Über den Stoffwechsel des menschlichen Herzens. I. Die Substratversorgung des gesunden menschlichen Herzens in Ruhe, während und nach körperlicher Arbeit. Pflügers Arch Ges Physiol 1965; 282: 1–27.CrossRefGoogle Scholar
  35. 35.
    Sobel BE, Weiss ES, Welch MJ, Siegel BA, Ter-Pogossian MM. Detection of remote myocardial infarction in patients with positron emission transaxial tomography and intravenous 11C-palmitate. Circulation 1977; 55: 853–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Geltman EM, Biello D, Welch MJ, Ter-Pogossian MM, Roberts R, Sobel BE. Characterization of nontransmural myocardial infarction by positron-emission tomography. Circulation 1982; 65: 747–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Sobel BE, Geltman EM, Tiefenbrunn AJ et al. Improvement of regional myocardial metabolism after coronary thrombolysis induced with tissue-type plasminogen activator or streptokinase. Circulation 1984; 69: 983–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Eisenberg JD, Sobel BE, Geltman EM. Differentiation of ischemic from nonischemic cardiomyopathy with positron emission tomography. Am J Cardiol 1987; 59: 1410–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Grover-McKay M, Schwaiger M, Krivokapich J, Perloff JK, Phelps ME, Schelbert HR. Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 1989; 13: 317–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Schelbert HR, Phelps ME. Positron computed tomography for the in vivo assessment of regional myocardial function. J Mol Cell Cardiol 1984; 16: 683–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Livni E, Elmaleh DR, Levy S, Brownell GL, Strauss WH. Beta-methyl [l-11C]heptadecanoic acid: a new myocardial metabolic tracer for positron emission tomography. J Nucl Med 1982; 23: 169–75.PubMedGoogle Scholar
  42. 42.
    Abendschein DR, Fox KA, Ambos HD, Sobel BE, Bergmann SR. Metabolism of betamethyl[l-HC]heptadecanoic acid in canine myocardium. Int J Rad Appl Instrum [B] 1987; 14: 579–85.CrossRefGoogle Scholar
  43. 43.
    Knust EJ, Kupfernagel C, Stöcklin G. Long-chain F-18 fatty acids for the study of regional metabolism in heart and liver; odd-even effects of metabolism in mice. J Nucl Med 1979; 20: 1170–5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • René Lerch

There are no affiliations available

Personalised recommendations