Myocardial perfusion imaging with copper-62 labeled Cu-PTSM

  • Mark A. Green
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 133)


The value of positron emission tomography (PET) in the study of myocardial physiology and the clinical diagnosis of cardiac disease is widely recognized. The short-lived radionuclides most commonly used as labels for PET radiopharmaceuticals are 15O,13N, 11C, and 18F. These have proven particularly useful because they allow natural biochemical substrates to be labeled by isotopic substitution for tracer studies of a diversity of discrete physiological processes. Unfortunately, the short half-lives of these radionuclides (2,10,20, and 110 minutes, respectively) pose problems with regard to isotope production and delivery. Hospitals that employ 15O, 13N, 11C, and 18F radiopharmaceuticals will generally find it necessary to operate an in-house cyclotron facility for radionuclide production, since only 18F is sufficiently long-lived to allow remote production for distribution via a regional delivery system. For many hospitals, the expense of operating a cyclotron for radionuclide production presents a barrier to the use of PET in clinical diagnosis.


Positron Emission Tomography Myocardial Perfusion Myocardial Perfusion Imaging Positron Emission Tomography Study Positron Emission Tomography Tracer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Browne E, Firestone RB. Table of radioactive isotopes. New York: John Wiley, 1986.Google Scholar
  2. 2.
    Mathias CJ, Welch MJ, Raichle ME et al. Evaluation of a potential generator-produced PET tracer for cerebral perfusion imaging: single-pass cerebral extraction measurements and imaging with radiolabeled Cu-PTSM. J Nucl Med 1990; 31: 351–9.PubMedGoogle Scholar
  3. 3.
    Zweit J, Smith AM, Downey S, Sharma HL. Excitation functions for deuteron induced reactions in natural nickel: production of no-carrier-added 64Cu from enriched 64Ni targets for positron emission tomography. Appl Radiat Isot 1991; 42: 193–8.CrossRefGoogle Scholar
  4. 4.
    Robinson GD Jr, Zielinski FW, Lee AW. The zinc-62/copper-62 generator: a convenient source of copper-62 for radiopharmaceuticals. Int J Appl Radiat Isot 1980; 31:111–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Green MA, Mathias CJ, Welch MJ et al. Copper-62 labeled pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II): synthesis and evaluation as a positron emission tomography tracer for cerebral and myocardial perfusion. J Nucl Med 1990; 31: 1989–96.PubMedGoogle Scholar
  6. 6.
    Yagi M, Kondo K. A 62Cu generator. Int J Appl Radiat Isot 1979; 30: 569–70.CrossRefGoogle Scholar
  7. 7.
    Kraus KA, Moore GE. Anion exchange studies. VI. The divalent transition elements manganese to zinc in hydrochloric acid1. J Am Chem Soc 1953; 75: 1460–2.CrossRefGoogle Scholar
  8. 8.
    Fujibayashi Y, Matsumoto K, Yonekura Y, Konishi J, Yokoyama A. A new zinc-62/copper-62 generator as a copper-62 source for PET radiopharmaceuticals. J Nucl Med 1989; 30: 1838–42.PubMedGoogle Scholar
  9. 9.
    Winkelmann DA, Bermke Y, Petering DH. Comparative properties of the anti-neoplastic agent 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazone) copper(II) and related chelates: linear free energy correlations. Bioinorg Chem 1974; 3: 261–77.PubMedCrossRefGoogle Scholar
  10. 10.
    John E, Fanwick PE, McKenzie AT, Stowell JG, Green MA. Structural characterization of a metal-based perfusion tracer: copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone). Int J Rad Appl Instrum [B] 1989; 16: 791–7.CrossRefGoogle Scholar
  11. 11.
    Green MA. A potential copper radiopharmaceutical for imaging the heart and brain: copperlabeled pyruvaldehyde bis(N4-methylthiosemicarbazone). Int J Rad Appl Instrum [B] 1987; 14: 59–61.CrossRefGoogle Scholar
  12. 12.
    Green MA, Klippenstein DL, Tennison JR. Copper(II) bis(thiosemicarbazone) complexes as potential tracers for evaluation of cerebral and myocardial blood flow with PET. J Nucl Med 1988; 29: 1549–57.PubMedGoogle Scholar
  13. 13.
    John EK, Green MA. Structure-activity relationships for metal-labeled blood flow tracers: comparison of keto aldehyde bis(thiosemicarbazonato)-copper(II) derivatives. J Med Chem 1990; 33: 1764–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Kostyniak PJ, Nakeeb SM et al. Acute toxicity and mutagenicity of the copper complex of pyruvaldehyde-bis(N4-methylthiosemicarbazone), Cu-PTSM. J Appl Toxicol 1990; 10: 417–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Mathias CJ, Margenau WH, Brodack JW, Welch MJ, Green MA. A remote system for the synthesis of copper-62 labeled Cu(PTSM). Appl Radiat Isot 1991; 42: 317–20.CrossRefGoogle Scholar
  16. 16.
    Shelton ME, Green MA, Mathias CJ, Welch MJ, Bergmann SR. Kinetics of copper-PTSM in isolated hearts: a novel tracer for measuring blood flow with positron emission tomography. J Nucl Med 1989; 30: 1843–7.PubMedGoogle Scholar
  17. 17.
    Shelton ME, Green MA, Mathias CJ, Welch MJ, Bergmann SR. Assessment of regional myocardial and renal blood flow with copper-PTSM and positron emission tomography. Circulation 1990; 82: 990–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Stone C.K, Martin C.C, Mueller B, Pyzalski RA, Perlman SB, Nickles RI. Comparison of myocardial uptake of copper pyruvaldehyde thiosemicarbazone with N-13 ammonia in humans by PET [abstract]. J Nucl Med 1991; 32 Suppl: 999.Google Scholar
  19. 19.
    Martin C.C, Oakes TR, Nickles RJ. Small cyclotron production of [Cu-60] Cu-PTSM for PET blood flow measurements [abstract]. J Nucl Med 1990; 31 Suppl: 815.Google Scholar
  20. 20.
    Howard-Lock HE, Lock CJL. Uses in therapy. In: Wilkinson G (ed). Comprehensive coordination chemistry: the synthesis, reactions, properties and applications of coordination compounds: volume 6: applications. Oxford: Pergamon Press 1987: 765.Google Scholar
  21. 21.
    Barnhart AJ, Voorhees WD, Green M.A. Correlation of Cu(PTSM) localization with regional blood flow in the heart and kidney1. Int J Rad Appl Instrum [B] 1989; 16: 747–8.CrossRefGoogle Scholar
  22. 22.
    Petering DH. Carcinostatic copper complexes1. In: Sigel H (ed) Metal complexes as anticancer agents2. New York: Marcel Dekker, 1980: 197–229.Google Scholar
  23. 23.
    Minkel DT, Saryan LA, Petering DH. Structure-function correlations in the reaction of bis(thiosemicarbazone) copper(II) complexes with Ehrlich acites tumor cells. Cancer Res 1978; 38: 124–9.PubMedGoogle Scholar
  24. 24.
    Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983; 52: 711–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Bergmann SR, Hack S, Tewson T, Welch MJ, Sobel BE. The dependence of accumulation of 13NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation 1980; 61: 34–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Bergmann SR, Hack SN, Sobel BE. Redistribution of myocardial thallium-201 without reperfusion: implications regarding absolute quantification of perfusion. Am J Cardiol 1982; 49: 1691–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Mathias CJ, Welch MJ, Green MA et al. In vivo comparison of copper blood-pool agents: potential radiopharmaceuticals for use with copper-62. J Nucl Med 1991; 32: 475–80.PubMedGoogle Scholar
  28. 28.
    Beanlands R, Muzik O, Lee K et al. Evaluation of copper-62 PTSM as a myocardial flow tracer [abstract]. J Nucl Med 1991; 32 Suppl: 1028.Google Scholar
  29. 29.
    Lee KS, Mangner TJ, Petry NA, Moskwa JJ, Mintun MA. Evaluation of Cu-62 PTSM in the detection of neural activation foci [abstract]. J Nucl Med 1991; 32 Suppl: 1072.Google Scholar
  30. 30.
    Herrero P, Markham J, Weinheimer J, Green MA, Welch MJ, Bergmann SR. Quantification of myocardial perfusion with Cu-62 PTSM and positron emission tomography [abstract]. J Nucl Med 1991; 32 Suppl: 937.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Mark A. Green

There are no affiliations available

Personalised recommendations