Nitrogen-13 ammonia perfusion imaging

  • Menco G. Niemeyer
  • Aaf F. M. Kuijper
  • Eduard G. M. D’Haene
  • Ernst E. van der Wall
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 133)


Positron emission tomography (PET) provides an advanced imaging technology that permits the accurate definition of regional tracer distribution. In combination with nitrogen-13 (N-13) ammonia, PET allows for the sensitive and specific detection of coronary artery disease. Several studies indicate the superiority of this approach in comparison to standard thallium-201 (Tl-201) tomographic (SPECT) imaging. In addition, regional blood flow can be accurately measured using N-13 ammonia PET, and this approach can be employed in conjunction with pharmacologic stress imaging to quantify regional flow reserve. In combination with metabolic markers, N-13 ammonia is capable of assessing myocardial viability. Furthermore, the N-13 ammonia PET approach may differentiate between various forms of cardiomyopathy. More studies are needed to define the cost-benefit ratio of the N-13 ammonia PET technique for the management of patients with coronary artery disease or cardiomyopathy.


Positron Emission Tomography Positron Emission Tomography Imaging Myocardial Blood Flow Hypertrophic Cardiomyopathy Myocardial Viability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Phelps ME, Mazziotta JC, Schelbert HR. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven Press, 1986.Google Scholar
  2. 2.
    Yamashita K, Tamaki N, Yonekura Y et al. Regional wall thickening of left ventricle evaluatied by gated positron emission tomography in relation to myocardial perfusion and glucose metabolism. J Nucl Med 1991; 32: 679–85.PubMedGoogle Scholar
  3. 3.
    Grover-McKay M, Schwaiger M, Krivokapich J, Perloff JK, Phelps ME, Schelbert HR. Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 1989; 13: 317–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Schelbert HR. Blood flow and substrate use in normal and diseased myocardium. Ann Intern Med 1983; 98: 339–59.PubMedGoogle Scholar
  5. 5.
    Nienaber CA, Ratib O, Gambhir SS et al. A quantitative index of regional blood flow in canine myocardium derived noninvasively with N-13 ammonia and dynamic positron emission tomography. J Am Coll Cardiol 1991; 17: 260–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Hoffman EJ, Phelps ME, Wisenberg G, Schelbert HR, Kuhl DE. Electrographic gating in positron emission computed tomography. J Comput Assist Tomogr 1979; 3: 733–9.PubMedGoogle Scholar
  7. 7.
    Gould KL. PET perfusion imaging and nuclear cardiology. J Nucl Med 1991; 32: 579–606.PubMedGoogle Scholar
  8. 8.
    Shah A, Shelbert HR, Schwaiger M et al. Measurement of regional myocardial blood flow with N-13 ammonia and positron emission tomography in intact dogs. J Am Coll Cardiol 1985; 5: 92–100.PubMedCrossRefGoogle Scholar
  9. 9.
    Krivokapich J, Smith GT, Huang SC et al. 13-N ammonia myocardial imaging at rest and exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation 1989; 80: 1328–37.PubMedCrossRefGoogle Scholar
  10. 10.
    Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert HR, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990; 15: 1032–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Schelbert HR, Phelps ME, Huang SC et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation 1981; 63: 1259–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Rauch B, Helus F, Grunze M et al. Kinetics of 13-N ammonia uptake in myocardial single cells indicating potential limitations in its applicability as a marker of myocardial blood flow. Circulation 1985; 71: 387–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Kambara H, Fudo T, Hashimoto T et al. Silent myocardial ischemia in patients with myocardial infarction: evaluation with positron emission computed tomography. Jpn Circ J 1989; 53: 1437–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Gould KL. Clinical cardiac positron emission tomography: state of the art. Circulation 1991; 84 (3 Suppl I): 123–136.Google Scholar
  15. 15.
    Schelbert HR, Wisenberg G, Phelps ME et al. Noninvasive assessment of coronary stenosis by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in man with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 1982; 49: 1197–207.PubMedCrossRefGoogle Scholar
  16. 16.
    Yonekura Y, Tamaki N, Senda M et al. Detection of coronary artery disease with 13-N ammonia and high resolution positron emission computed tomography. Am Heart J 1987; 113: 645–54.PubMedCrossRefGoogle Scholar
  17. 17.
    Zimmermann R, Tillmanns H, Knapp WH et al. Regional myocardial nitrogen-13 glutamate uptake in patients with coronary artery disease: inverse post-stress relation to thallium-201 uptake in ischemia. J Am Coll Cardiol 1988; 11: 549–56.PubMedCrossRefGoogle Scholar
  18. 18.
    Gould KL. Percent coronary stenosis: battered gold standard pernicious relic, or clinical practicality? J Am Coll Cardiol 1988; 11: 886–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Schwaiger M, Brunken RC, Krivokapich J et al. Beneficial effect of residual anterograde flow on tissue viability as assessed by positron emission tomography in patients with myocardial infarction. Eur Heart J 1987; 8: 981–8.PubMedGoogle Scholar
  20. 20.
    Brunken K, Schwaiger M, Grover-McKay M, Phelps M, Tillisch J, Schelbert HR. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 1987; 10: 557–67.PubMedCrossRefGoogle Scholar
  21. 21.
    Marshall RC, Tillisch JH, Phelps ME et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography. [18]Flabeled fluorodeoxyglucose and N-13 ammonia. Circulation 1983; 67: 766–78.PubMedCrossRefGoogle Scholar
  22. 22.
    Williams BR. Positron emission tomography for the assessment of ischemia and myocardial viability. J Myocardial Ischemia 1990; 2: 33–64.Google Scholar
  23. 23.
    Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18-F-fluorodeoxyglucose. Circulation 1991; 83: 26–37.PubMedCrossRefGoogle Scholar
  24. 24.
    Sobel BE, Geltman EM, Tiefenbrunn AJ et al. Improvement of regional myocardial metabolism after coronary thrombolysis induced with tissue-type plasminogen activator or streptokinase. Circulation 1984; 69: 983–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Goldstein RA, Kirkeeide R, Smalling RW et al. Changes in myocardial perfusion reserve after PTCA: noninvasive assessment with positron tomography. J Nucl Med 1987; 28:1262–7.PubMedGoogle Scholar
  26. 26.
    Tillisch J, Brunken R, Marschall R et al. Reversibility of cardial wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986; 314: 884–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Demer LL, Gould KL, Goldstein R, Kirkeeide L. Noninvasive assessment of coronary collaterals in man by PET perfusion imaging. J Nucl Med 1990; 31: 259–70.PubMedGoogle Scholar
  28. 28.
    Brunken K, Kottou S, Nienaber CA et al. PET detection of viable tissue in myocardial segments with persistent defects at Tl-201 SPECT. Radiology 1989; 172: 65–73.PubMedGoogle Scholar
  29. 29.
    Schelbert HR. Positron emission tomography for the assessment of myocardial viability. Circulation 1991; 84 (Suppl I): I122–I131.PubMedGoogle Scholar
  30. 30.
    Liu P, Kiess MC, Okada RD et al. The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: does it represent scar or ischemia? Am Heart J 1985; 110: 996–1001.PubMedCrossRefGoogle Scholar
  31. 31.
    Kiat H, Berman DS, Maddahi J et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 1988; 12: 1456–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Dilsizian V, Rocco TP, Freedman NMT, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by reinjection of thallium after stress-redistribution imaging1. N Engl J Med 1990; 323: 141–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Ohtani H, Tamaki N, Yonekura Y et al. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Cardiol 1990; 66: 394–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Dilsizian V, Smeltzer WR, Freedman NMT, Dextras R, Bonow RO. Thallium reinjection after stress-redistribution imaging. Does 24-hour delayed imaging after reinjection enhance detection of viable myocardium? Circulation 1991; 83: 1247–55.PubMedCrossRefGoogle Scholar
  35. 35.
    Tamaki N, Yonekura Y, Senda M et al. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 1988; 29:1181–8.PubMedGoogle Scholar
  36. 36.
    Tamaki N, Yonekura Y, Yamashita K et al. Value of rest-stress myocardial positron tomography using nitrogen-13 ammonia for preoperative prediction of reversible asynergy. J Nucl Med 1989; 30: 1302–10.PubMedGoogle Scholar
  37. 37.
    Tamaki N, Ohtani H, Yamashita K et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991; 32: 673–8.PubMedGoogle Scholar
  38. 38.
    Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by positron emission tomography. J Nucl Med 1991; 32: 565–78.PubMedGoogle Scholar
  39. 39.
    Vaghaiwalla-Mody FV, Brunken RC, Warner Stevenson L, Nienaber CA, Phelps ME, Schelbert HR. Differentiating cardiomyopathy of coronary artery disease from nonischemic dilated cardiomyopathy utilizing positron tomography. J Am Coll Cardiol 1991; 17: 373–83.CrossRefGoogle Scholar
  40. 40.
    Geldman EM, Smith JL, Beecker D, Ludbrook PA, Ter-Pogossian MM, Sobel BE. Altered regional myocardial metabolism in congestive cardiomyopathy detected by positron tomography. Am J Med 1983; 4: 773–85.CrossRefGoogle Scholar
  41. 41.
    Perloff JK, Roberts WC, Deleon ACJ, O’Doherty D. The distinctive electrocardiogram of Duchenne’s progressive muscular dystrophy. An electrocardiographic pathologic correlative study. Am J Med 1967; 42: 179–88.PubMedCrossRefGoogle Scholar
  42. 42.
    Perloff JK, Henze E, Schelbert HR. Alterations in regional myocardial metabolism perfusion, and wall motion in Duchenne’s muscular dystrophy studied by radionuclide imaging. Circulation 1984; 69: 33–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Endo M, Yoshida K, Iinuma TA et al. Noninvasive quantification of regional myocardial blood flow and ammonia extraction fraction using nitrogen-13 ammonia and positron emission tomography. Ann Nucl Med 1987; 1: 1–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Yoshida K, Endo M, Himi T et al. Measurement of regional myocardial blood flow in hypertrophic cardiomyopathy: application of the first-pass flow model using 13-N ammonia and PET. Am J Physiol Imaging 1989; 4: 97–104.PubMedGoogle Scholar
  45. 45.
    Camici P, Chiriatti G, Lorenzoni R et al. Coronary vasodilatation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 1991; 17: 879–86.PubMedCrossRefGoogle Scholar
  46. 46.
    Kehtarnavaz N, Defigueiredo RJP. A novel surface reconstruction and display method for cardiac PET imaging. IEEE Trans Med Imaging 1984; 3: 108–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Menco G. Niemeyer
  • Aaf F. M. Kuijper
  • Eduard G. M. D’Haene
  • Ernst E. van der Wall

There are no affiliations available

Personalised recommendations