Clinical applications of rubidium-82 for myocardial perfusion imaging

  • Kim A. Williams
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 133)


The many recent advances in the fields of diagnostic and interventional cardiology have placed growing importance on the noninvasive approaches to myocardial perfusion imaging. The goals of such imaging has been to determine the extent of coronary artery disease, its impact on myocardial blood flow under varied physiologic and pathophysiologic states, the presence, location and extent of myocardial infarction, and residual myocardial segmentai viability. Recently, new myocardial perfusion imaging tracers have been developed which are capable of addressing these important clinical issues. This article aims to review the application of one of these tracers, rubidium-82 (Rb-82). The clinical potential of this tracer will be highlighted by a review of the fundamentals and history of myocardial perfusion imaging.


Positron Emission Tomogra Single Photon Emission Compute Tomography Myocardial Perfusion Myocardial Perfusion Imaging Myocardial Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Budinger TF. Physiology and physics of nuclear cardiology. Cardiovasc Clin 1979; 10: 9–78.PubMedGoogle Scholar
  2. 2.
    Machac J: Technetium-99m isonitrile: a perfusion or a viability agent? [editorial]. J Am Coll Cardiol 1989; 14: 1685–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson LL, Seldin DW. Clinical experience with technetium-99m teboroxime, a neutral, lipophilic myocardial perfusion imaging agent. Am J Cardiol 1990; 66: 63E–67E.PubMedCrossRefGoogle Scholar
  4. 4.
    Gould KL. PET perfusion imaging and nuclear cardiology. J Nucl Med 1991; 32: 579–606.PubMedGoogle Scholar
  5. 5.
    Gould KL, Goldstein RA, Mullani NA. Economic analysis of clinical positron emission tomography of the heart with rubidium-82. J Nucl Med 1989; 30: 707–17.PubMedGoogle Scholar
  6. 6.
    Berman DS, Garcia EV, Maddahi J et al. Thallium-201 myocardial perfusion scintigraphy1. In: Freeman LM, editor. Freeman and Johnson’s clinical radionuclide imaging. 3rd ed. Orlando: Grune & Stratton, 1984: 485.Google Scholar
  7. 7.
    Thallous Chloride Tl-201 (product insert). North Billerica, Mass.: New England Nuclear Medical Products, May, 1984.Google Scholar
  8. 8.
    Gordon DG, Pfisterer M, Williams R, Walaski S, Ashburn W. The effect of diaphragmatic attenuation on Tl-201 images. Clin Nucl Med 1979; 4: 150–1.PubMedCrossRefGoogle Scholar
  9. 9.
    Okada RD, Glover D, Gaffney T, Williams S. Myocardial kinetics of technetium-99m-hexakis-2-methoxy-2-methylpropyl-isonitrile. Circulation 1988; 77: 491–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Sporn V, Perez Balino N, Holman BL et al. Simultaneous measurement of ventricular function and myocardial perfusion using the technetium-99m isonitriles. Clin Nucl Med 1988; 13: 77–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Perez-Gonzalez J, Botvinick EH, Dunn R et al. The late prognostic value of acute scintigraphic measurement of myocardial infarction size. Circulation 1982; 66: 960–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Walsh WF, Fill HR, Harper PV. Nitrogen-13-labeled ammonia for myocardial imaging. Semin Nucl Med 1977; 7: 59–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Williams KA, Ryan JW, Resnekov L et al. Planar positron imaging of rubidium-82 for myocardial infarction: a comparison with thallium-201 and regional wall motion. Am Heart J 1989; 118: 601–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Brunsden B, Harper PV, Beck RN. Elimination of collimator-hole pattern by double displacement of a hexagonal array [abstract]. J Nucl Med 1975; 16 Suppl: 517.Google Scholar
  15. 15.
    Neirinckx RD, Kronauge JF, Gennaro GP, Loberg MD. Evaluation of inorganic adsorbents for the rubidium-82 generator. I. Hydrous SnO2. J Nucl Med 1982; 23: 245–9.PubMedGoogle Scholar
  16. 16.
    Ryan JW, Harper PV, Stark VS et al. Radiation absorbed dose estimate for rubidium-82 determined from in vivo measurements in human subjects. In: Schlafke-Stelson AT, Watson EE, editors. Fourth international radiopharmaceutical dosimetry symposium: proceedings of a conference held at Oak Ridge, Tennessee; November 5–8, 1985. Oak Ridge: Oak Ridge Associated Universities Publishers, 1986; 346–58.Google Scholar
  17. 17.
    Mullani NA, Gould KL. First-pass measurements of regional blood flow with external detectors. J Nucl Med 1983; 24: 577–81.PubMedGoogle Scholar
  18. 18.
    Mullani NA, Goldstein RA, Gould KL et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 1983; 24: 898–906.PubMedGoogle Scholar
  19. 19.
    Goldstein RA, Mullani NA, Marani SK, Fisher DJ, Gould KL, O’Brien HA Jr. Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacologic interventions. J Nucl Med 1983; 24: 907–15.PubMedGoogle Scholar
  20. 20.
    Selwyn AP, Allan RM, L’Abbate A et al. Relation between regional myocardial uptake of rubidium-82 and perfusion: absolute reduction of cation uptake in ischemia. Am J Cardiol 1982; 50: 112–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Leppo JA. Dipyridamole-thallium imaging: the lazy man’s stress test. J Nucl Med 1989; 30: 281–7.PubMedGoogle Scholar
  22. 22.
    Verani MS, Maharian JJ, Hixson JB, Boyce TM, Staudacher RA. Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise. Circulation 1990; 82: 80–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Gould KL, Lipscomb K. Effects of coronary stenosis on coronary flow reserve and resistance. Am J Cardiol 1974; 34: 48–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Goldstein RA, Haynie M. Limited myocardial perfusion reserve in patients with left ventricular hypertrophy. J Nucl Med 1990; 31: 255–8.PubMedGoogle Scholar
  25. 25.
    Gould KL, Kirkeeide Rl, Buchi. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990; 15: 459–74.PubMedCrossRefGoogle Scholar
  26. 26.
    White CW, Wright CB, Doty DB. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984; 310: 819–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Goldstein RA, Kirkeeide RL, Demer LL et al. Relations between geometric dimensions of coronary artery stenoses and myocardial perfusion reserve in man. J Clin Invest 1987; 79: 1473–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Gould KL, Goldstein RA, Mullani NA et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 1986; 7: 775–89.PubMedCrossRefGoogle Scholar
  29. 29.
    Demer L, Gould KL, Goldstein RA. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 1989; 79: 825–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Yonekura Y, Tamaki N, Senda M, Nohara R, Kambara H, Konishi Y et al. Detection of coronary artery disease with 13N-ammonia and high-resolution positron-emission computed tomography. Am Heart J 1987; 113: 645–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Gould KL. How accurate is thallium exercise testing for the diagnosis of coronary artery disease [editorial]. J Am Coll Cardiol 1989; 14: 1487–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Diamond GA. How accurate is SPECT thallium scintigraphy? [editorial]. J Am Coll Cardiol 1990; 16: 1017–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Zijlstra F, Fioretti P, Reiber JH, Serruys PW. Which cineangiographically assessed anatomic variable correlates best with functional measurements of stenosis severity? A comparison of quantitative analysis of the coronary cineangiogram with measured coronary flow reserve and exercise/redistribution thallium-201 scintigraphy. J Am Coll Cardiol 1988; 12: 686–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Tamaki N, Yonekura Y, Senda M et al. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 1988; 29: 1181–8.PubMedGoogle Scholar
  35. 35.
    Go RT, Marwick TH, Maclntyre WJ et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990; 31: 1899–1905.PubMedGoogle Scholar
  36. 36.
    Goldstein RA, Kirkeeide RL, Smalling RW. Changes in myocardial perfusion reserve after PTCA: noninvasive assessment with positron tomography. J Nucl Med 1987; 28: 1262–7.PubMedGoogle Scholar
  37. 37.
    Ribeiro P, Shea M, Deanfield JE. Different mechanisms for the relief of angina after coronary bypass surgery. Physiological versus anatomical assessment. Br Heart J 1984; 52: 502–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Demer LL, Gould KL, Goldstein RA, Kirkeeide RL. Noninvasive assessment of coronary collaterals in man by PET perfusion imaging. J Nucl Med 1990; 31: 259–70.PubMedGoogle Scholar
  39. 39.
    Conti CR. Silent myocardial ischemia: prognostic significance and therapeutic implications. Clin Cardiol 1988; 11: 807–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Gottlieb SO. Association between silent myocardial ischemia and prognosis: insensitivity of angina pectoris as a marker of coronary artery disease activity. Am J Cardiol 1987; 60: 33J–38J.PubMedCrossRefGoogle Scholar
  41. 41.
    Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol 1987; 59: 23C–30C.PubMedCrossRefGoogle Scholar
  42. 42.
    Beller GA. Myocardial perfusion imaging for detection of silent myocardial ischemia. Am J Cardiol 1988; 61: 22F–28F.PubMedCrossRefGoogle Scholar
  43. 43.
    Nabel EG, Rocco MB, Selwyn AB. Characteristics and significance of ischemia detected by ambulatory electrocardiographic monitoring. Circulation 1987; 75 (6 Suppl): V74–83.Google Scholar
  44. 44.
    Deanfield JE, Shea MJ, Wilson RA, Horlock P, de Landsheere C.M, Selwyn AP. Direct effects of smoking on the heart: silent ischemic disturbances of coronary flow. Am J Cardiol 1986; 57: 1005–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Deanfield JE, Shea MJ, Selwyn AP. Clinical evaluation of transient myocardial ischemia during daily life. Am J Med 1985; 79: 18–24.PubMedCrossRefGoogle Scholar
  46. 46.
    Selwyn AP, Shea MJ, Deanfield JE, Wilson RA, De Landsheere C. Jones T. Clinical problems in coronary disease are caused by wide variety of ischemic episodes that affect patients out of hospital. Am J Med 1985; 79: 12–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Deanfield JE, Shea M, Kensett M et al. Silent myocardial ischaemia due to mental stress. Lancet 1984; 2:1001–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Shea MJ, Deanfield JE, Wilson RA, de Landsheere C, Selwyn AP. Silent myocardial ischemia during mastication. Am J Med 1987; 82: 357–60.PubMedCrossRefGoogle Scholar
  49. 50.
    Shea MJ, Deanfield JE, de Landsheere C.M, Wilson RA, Kensett M, Selwyn AP. Asymptomatic myocardial ischemia following cold provocation. Am Heart J 1987; 114: 469–76.PubMedCrossRefGoogle Scholar
  50. 51.
    Camici P, Araujo LI, Spinks T et al. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 1986; 74: 81–8.PubMedCrossRefGoogle Scholar
  51. 52.
    Sobel BE, Geltman EM, Tiefenbrunn AJ et al. Improvement of regional myocardial metabolism after coronary thrombolysis induced with tissue-type plasminogen activator or streptokinase. Circulation 1984; 69: 983–90.PubMedCrossRefGoogle Scholar
  52. 53.
    Schwaiger M, Brunken R, Grover-McKay M. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 1986; 8: 800–8.PubMedCrossRefGoogle Scholar
  53. 54.
    Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990; 323: 141–6.PubMedCrossRefGoogle Scholar
  54. 55.
    Brunken R, Schwaiger M, Grover-McKay M. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 1987; 10: 557–67.PubMedCrossRefGoogle Scholar
  55. 56.
    Tamaki N, Ohtani H, Yamashita K. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991; 32: 673–8.PubMedGoogle Scholar
  56. 57.
    Gould KL, Yoshida K, Hess MJ, Haynie M, Mullani NA, Smalling RW. Myocardial metabolism of fluorodexoglucose compared to cell membrane integrity for the potassium analog Rubidium-82 for assessing infarct size in man by PET. J Nucl Med 1991; 32: 1–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Kim A. Williams

There are no affiliations available

Personalised recommendations