Skip to main content

Benthic Secondary Production in the Deep Sea

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 360))

Abstract

Production in populations of deep-sea macrobenthic protobranch bivalves in the Rockall Trough (N.E. Atlantic) are estimated from demographic models developed primarily from tracking recruitment modes in size frequencies in an epibenthic-sled time-series from a 2.9-km-deep Permanent Station, and corroborated from other data. P/B ratios for 4 bivalve-community dominants range from 0.49 to 1.65, which fall within the range of inshore protobranchs. Their combined production (114.9 mg wet weight m-2 yr-1), however, is less than half that predicted (363 mg wet weight m-2 yr-l) from relationships established empirically in a large data set from the continental shelf. Total nonforaminiferal macrobenthoscommunity production equivalent to 122 mg organic carbon is tentatively extrapolated from the bivalve data based on the mean P/B of 0.98. This value for somatic production represents around 3 to 12% of estimated total respiratory carbon uptake of the sediment community for this depth, indicating that secondary production by macrobenthos is a small but non-trivial component of carbon consumption and turnover at the floor of the deep ocean.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, K.R. (1951) The Horokiwi Stream, Fisheries Bulletin, New Zealand Marine Department, 10, 1–238.

    Google Scholar 

  • Allen, K.R. (1971) Relation between production and biomass, Journal of the Fisheries Research Board of Canada, 28, 1573–1581.

    Article  Google Scholar 

  • Banse, K. and Mosher, S. (1980). Adult body mass and annual production/biomass relationships of field populations, Ecological Monographs, 50, 355–379.

    Article  Google Scholar 

  • Barry, J.P. and Tegner, M.J. (1989) Inferring demographic processes from size-frequency distributions: simple models indicate specific patterns of growth and mortality, Fishery Bulletin, 88, 13–19.

    Google Scholar 

  • Basson, M., Rosenberg, A.A. and Beddington, J.R. (1988) The accuracy and reliability of two new methods for estimating growth parameters from length-frequency data, Journal du Conseil, 44, 277–285.

    Article  Google Scholar 

  • Beamish, R.J. and Chilton, D.E. (1982) Preliminary evaluation of a method to determine the age of sablefish (Anopoploma fimbria), Canadian Journal of Fisheries and Aquatic Science, 39, 277–287.

    Article  Google Scholar 

  • Bennett, J.T., Boehlert, G.W. and Turekian, K.K. (1982) Confirmation of longevity in Sebastes diploproa (Pisces: Scorpaenidae) from 210Pb/226Ra meausurements in otoliths, Marine Biology, 71, 209–215.

    Article  Google Scholar 

  • Benke, A.C. (1979) A modification of the Hynes method for estimating secondary production with particular significance for multivoltine populations, Limnology and Oceanography, 24, 171–176.

    Article  Google Scholar 

  • Bergstad, O.A. (1990) Distribution, population structure, growth and reproduction of the roundnose grenadier, Coryphaenoides rupestris (Pisces, Macrouridae) in the deep waters of the Skagerrak, Marine Biology, 107, 25–39.

    Article  Google Scholar 

  • Bishop, J.D.D. (1982) The growth, development and reproduction of a deep-sea cumacean (Crustacea: Peracarida), Zoological Journal of the Linnaean Society, 74, 359–380.

    Article  Google Scholar 

  • Brey, T. (1986a) Estimation of annual PIB-ratio and production of marine benthic invertebrates from length-frequency data, Ophelia (Supplement), 4, 45–54.

    Google Scholar 

  • Brey, T. (l986b) Formalin and formaldehyde-depot chemicals: effects on dry weight and ashfree dry weight of two marine bivalve species, Meeresforschung, 31, 52–57.

    Google Scholar 

  • Brey, T. (1990a) Confidence limits for secondary production estimates: application of the bootstrap to the increment summation method, Marine Biology, 106, 503–508.

    Article  Google Scholar 

  • Brey, T. (1990b) Estimating productivity of macrobenthic invertebrates from biomass and mean individual weight, Meeresforschung, 32, 329–343.

    Google Scholar 

  • Brey, T., Arntz, W.E., Pauly, D. and Rumohr, H. (1990) Artica (Cyprina) islandica in Kiel Bay (Western Baltic): growth, production and ecological significance, Journal of Experimental Marine Biology and Ecology, 136, 217–235.

    Article  Google Scholar 

  • Buchanan, J.B. and Warwick, R.M. (1974) An estimate of benthic macrofaunal production in the offshore mud of the Northumberland coast, Journal of the Marine Biological Association of the United Kingdom, 54, 197–222.

    Article  Google Scholar 

  • Campana, S.E., Zwanenburg, K.C.T. and Smith, J.N. (1989). 210Pb/226Ra determinations of longevity in red fish, Canadian Journal of Fisheries and Aquatic Science, 47, 163–165.

    Article  Google Scholar 

  • Cassie, R. M., (1954) Some uses of probability paper in the analysis of size frequency distributions, Australian Journal of Marine and Freshwater Research, 5, 513–522.

    Google Scholar 

  • Caswell, H. (1982) Life history theory and the eqüilibrium status of populations, American Naturalist, 120, 317–339.

    Article  Google Scholar 

  • Caswell, H. (1989) Matrix population models: construction, analysis, and interpretation, Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Cederwall, H. (1977) Annual macrofauna production of a soft bottom in the northern Baltic proper, in B.F. Keegan, P.O. O’Ceidigh, P.O. and P.J.S. Boaden (eds.), Biology of Benthic Organisms, Pergamon Press, Oxford, pp. 155–164.

    Google Scholar 

  • Childress, J.J., Cowles, D.L., Favuzzi, J.A. and Mickel, T.J. (1990) Metabolic rates of benthic deep-sea decapod crustaceans decline with increasing depth primarily due to decline in temperature, Deep-Sea Research, 37A, 929–949.

    Article  Google Scholar 

  • Clarke, A. (1987) Temperature, latitude and reproductive effort, Marine Ecology Progress Series, 38, 89–99.

    Article  Google Scholar 

  • Crisp, D.J. (1984) Energy flow measurements, in N.A. Holme, and A.D. McIntyre (eds.), Methods for the Study of Marine Benthos, 2nd ed., Blackwell Scientific, Oxford, pp.284–372.

    Google Scholar 

  • Cushman, R.M., Shugart, H.H., Hildebrand, S.G. and Elwood, J.W. (1978) The effect of growth curve and sampling regime on instaneous-growth, removal-summation, and Hynes/Hamilton estimates of aquatic insect production: a computer simulation, Limnology and Oceanography, 23, 184–189.

    Article  Google Scholar 

  • Dickie, L.M., Kerr, S.R. and Boudreau, P.R. (1987) Size-dependent processes underlying regularities in ecosystem structure, Ecological Monographs, 57, 233–250.

    Article  Google Scholar 

  • Duco, A. & Roux, M. (1981) Modalites particulieres de croissance liees au milieu abyssal chez les Bathycrinidae (Echinodermes, Crinoides pedoncules), Oceanologica Acta, 4, 389–393.

    Google Scholar 

  • Edgar, G.J. (1990) The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production, Journal of Experimental Marine Biology and Ecology, 137, 195–214

    Article  Google Scholar 

  • Ettershank, G. (1984) A new approach to the assessment of longevity in the Antarctic krill Euphasia superba, Journal of Crustacean Biology, 4, (Spec. No. 1), 295–305.

    Google Scholar 

  • Farran, G.P. (1924) Seventh report on the fishes of the Irish Atlantic slope. The macrourid fishes Coryphaenoididae), Proceedings of the Royal Irish Academy, 36B(8), 9–143.

    Google Scholar 

  • Fournier, D.A. and Breen, P.A. (1983) Estimation of abalone mortality rates with growth analysis, Transactions of the American Fisheries Society, 112, 403–411.

    Article  Google Scholar 

  • Fournier, D.A., Sibert, J.R., Majkowski, J. and Hampton, J. (1990) MULTIFAN a liklihoodbased method for estimating growth parameters and age composition from multiple length frequency data sets illustrated using data for southern bluefin tuna (Thunnus maccoyii), Canadian Journal of Fisheries and Aquatic Science, 47, 301–317.

    Article  Google Scholar 

  • Gage, J.D. (1977) Structure of the abyssal macrobenthic community in the Rockall Trough, in B.F. Keegan, P.O. O’Ceidigh, P.O. and P.J.S. Boaden (eds.), Biology of Benthic Organisms, Pergamon Press, Oxford, pp. 247–260.

    Google Scholar 

  • Gage, J.D. (1986) The analysis of population dynamics in deep-sea benthos, in P.E. Gibbs (ed.), Proceedings of the Nineteenth European Marine Biology Symposium, Cambridge University Press, pp.201–212.

    Google Scholar 

  • Gage, J.D. (1987) Growth of the deep-sea irregular sea urchins Echinosigra phiale and Hemiaster expergitus in the Rockall Trough (N.E. Atlantic Ocean), Marine Biology, 96, 19–30.

    Article  Google Scholar 

  • Gage, J.D. (1990a). Annual and interannual changes in benthic populations in the Rockall Trough, Journal of the Marine Biological Association of the United Kingdom, 70, 671 (abstract).

    Article  Google Scholar 

  • Gage, J.D. (1990b) Skeletal growth markers in the deep-sea brittle stars Ophiur ljungmani and Ophiomusium lymani, Marine Biology, 104, 427–435.

    Article  Google Scholar 

  • Gage, J.D. Skeletal growth zones as age markers in the sea urchin Psammechinus miliaris, Marine Biology (in press).

    Google Scholar 

  • Gage, J.D. and Tyler, P.A. (1981) Re-appraisal of age composition, growth and survivorship of the deep-sea brittle star Ophiura ljungmani from size structure in a sample time series from the Rockall Trough, Marine Biology, 64, 163–172.

    Article  Google Scholar 

  • Gage, J.D. and Tyler, P.A. (1985) Growth and recruitment of the deep-sea uchin Echinus ajfinis, Marine Biology, 90, 41–53.

    Article  Google Scholar 

  • Gooday, A.J. and Turley, C.M. (1990) Response by benthic organisms to inputs of organic material to the ocean floor: a review, Philosophical Transactions of the Royal Society of London, Series A, 331, 119–138.

    Google Scholar 

  • Grant, A., Morgan, P.J. and Olive, P.J.W. (1987) Use made in marine ecology of methods for estimating demographic parameters from size/frequency data, Marine Biology, 95, 201–208.

    Article  Google Scholar 

  • Grant, A. (1989) The use of graphical methods to estimate demographic parameters, Journal of the Marine Biological Association of the United Kingdom, 69, 367–371.

    Article  Google Scholar 

  • Hamilton, A.L. (1969) On estimating annual production, Limnology and Oceanography, 14, 771–782.

    Article  Google Scholar 

  • Harding, J.P. (1949) The use of probability paper for the graphical analysis of polymodal frequency distributions, Journal of the Marine Biological Association of the United Kingdom, 28, 141–153.

    Article  Google Scholar 

  • Harrison, K. (1988) Seasonal reproduction in deep-sea Crustacea (Isopoda: Asellota), Journal of Natural History, 22, 175–197.

    Article  Google Scholar 

  • Heip, C., Herman, P.M.J. and Coodmans, A. (1982) The productivity of marine meiobenthos, Academiae Analecta, 44, 1–20.

    Google Scholar 

  • Hynes, H.B.N. and Colman, M.J. (1968) A simple method for assessing the annual production of stream benthos, Limnology and Oceanography, 13, 569–573.

    Article  Google Scholar 

  • Ingram, C. and Hessler, R.R. (1987) Population biology of the deep-sea amphipod Eurythenesgryllus: inferences from instar analysis, Deep-Sea Research, 34A, 1889–1907.

    Article  Google Scholar 

  • Kimmerer, W.J. (1987) The theory of secondary production calculations for continuously reproducing populations, Limnology and Oceanography, 32, 1–13.

    Article  Google Scholar 

  • Krueger, C.C. and Martin, F.B. (1980) Computation of confidence intervals for the sizefrequency (Hynes) method of estimating secondary production. Limnology and Oceanography, 25, 773–777

    Article  Google Scholar 

  • Lampitt, R.S. (1990) Directly measured rapid growth of a deep-sea barnacle, Nature, 345, 805–807.

    Article  Google Scholar 

  • Lapchin, L. and Neveu, A. (1980) The production of benthic invertebrates: comparison of different methods, Acta Oecologica, 1, 307–322.

    Google Scholar 

  • Levin, L.A. and Huggett, D.V. (1990) Implications of alternative reproductive modes for seasonality and demography in an estuarine polychaete, Ecology, 71, 2191–2208.

    Article  Google Scholar 

  • Lightfoot, R., Tyler, P.A. and Gage, J.D. (1979) Seasonal reproduction in deep-sea bivalves and brittlestars, Deep-Sea Research, 26A, 967–973.

    Article  Google Scholar 

  • Macdonald, P.D.M. and Pitcher, T.J. (1979) Age-groups from size-frequency data: a versatile and efficient method of analyzing distribution mixtures, Journal of the Fisheries Research Board of Canada, 36, 987–1001.

    Article  Google Scholar 

  • Mann, K.H. (1969) The dynamics of aquatic ecosystems, Advances in Ecological Research, 6, 1–81.

    Article  Google Scholar 

  • Menzie, C.A. (1980) A note on the Hynes method of estimating secondary production, Limnology and Oceanography, 25, 770–773.

    Article  Google Scholar 

  • Nicol, S. (1987) Some limitations on the use of lipofuscin ageing method, Marine Biology, 93, 609–614.

    Article  Google Scholar 

  • Nichols, F.H., (1975) Dynamics and energetics of three deposit-feeding benthic invertebrate populations in Puget Sound, Washington, Ecological Monographs, 45, 57–82.

    Google Scholar 

  • Pauly, D. (1987) A review of the ELEFAN system for analysis oflength frequency data in fish and aquatic invertebrates, in D. Pauly and G.R. Morgan (eds.), Length-Based Methods in Fisheries esearch, ICLARM Conference Proceedings, 13, Manila.

    Google Scholar 

  • Peer, D.C. (1970) Relation between biomass, productivity, and loss to predators in a population of a marine benthic polychaete, Pectinararia hyberborea, Journal of the Fisheries Research Board of Canada, 27, 2143–2153.

    Article  Google Scholar 

  • Petersen, G.H. and Curtis, M.A. (1980) Differences in energy flow through major components of subarctic, temperate and tropical marine shelf ecosystems, Dana, 1, 53–64.

    Google Scholar 

  • Rachor, E. (1976) Structure, dynamics and productivity of a population of Nucula nitosa (Bivalvia, Protobranchiata) in the German Bight, Bericht der Deutchen Wissenschaftlichen Kommision fur Meeresforchung, 24, 296–331.

    Google Scholar 

  • Rannou, M. (1975) Donnees nouvelles sur l’activite reproductive cycliques des poissons benthique bathyaux et abyssaux, Compte rendu hebdomadaire des seances de l’Academie dessciences, Paris, 281, Serie D, 1023–1025.

    Google Scholar 

  • Rannou, M. (1976) Age et croissance d’un poisson bathyal: Nezumia sclerorhynchus (Macrouridae Gadiforme) de la Mer d’Alboran, Cahiers de Biologie Marin, 17, 413–421.

    Google Scholar 

  • Rhoads, D.C., Lutz, R.A., Cerrato, R.M. and Revalas, E.C. (1982) Growth and predation activity at deep-sea hydrothennal vents along the Galapgos Rift, Journal of Marine Science, 40, 503–516.

    Google Scholar 

  • Rigler, F.H. and Downing, J.A. (1984) The calculation of secondary production, in J.A. Downing and F.H. Rigler (eds.), Secondary Productivity in Fresh Waters, IBP Handbook No. 17, 2nd ed., Blackwell, Oxford, pp. 19–58.

    Google Scholar 

  • Robertson, A.I. (1979) The relationship between annual production: biomass ratios and lifespans for marine macrobenthos, Oecologia (Berlin), 38, 193–202.

    Article  Google Scholar 

  • Rosenberg, A.A., Beddington, J.R and Basson, M. (1986) Growth and longevity of krill during the first decade of pelagic whaling, Nature, 324, 152–154.

    Article  Google Scholar 

  • Rowe, G.T. (1983). Biomass and production of the deep-sea macrobenthos, in G.T. Rowe (ed.) Deep-Sea Biology, vol. 8, The Sea, Wiley-Interscience, New York, pp. 97–121.

    Google Scholar 

  • Rowe, G.T., Sibuet, M., Deming, J., Tietjen, J. and Khripounoff, A. (1990) Organic carbon turnover time in deep-sea benthos, Progress in Oceanography, 24, 141–160.

    Article  Google Scholar 

  • Rumohr, H., Brey, T. and Ankar, S. (1987) A compilation of biometric conversion factors for benthic invertebrates of the Baltic Sea, Baltic Marine Biology Publication No.9, 56 pp.

    Google Scholar 

  • Sahrhage, D. (1986) Wirtschaftlich wichtige Grenadierfisches des Nordatlantiks, Mitteilungen aus dem Institut fur Seefischerei der Bundesforehungsansalt fur Fischerie, Hamburg, Nr 37, 81 pp.

    Google Scholar 

  • Sanders, H.L. (1956) Oceanography of Long Island Sound, 1952-1954. X. The biology of marine bottom communities, Bulletin of the Bingham Oceanographic Collection, 15, 345–414.

    Google Scholar 

  • Schnute, J. and Fournier, D.A. (1980) A new approach to length-frequency analysis: growth structure, Canadian Journal of Fisheries and Aquatic Science, 37, 1337–1351.

    Article  Google Scholar 

  • Schwinghamer, P., Hargrave, B., Peer, D., and Hawkins, C.M. (1986) Partitioning of production and respiration among size groups of organisms in an intertidal benthic community, Marine Ecology Progress Series, 31, 131–142.

    Article  Google Scholar 

  • Sheehy, M.R.J. (1990) Potential of morphological lipofuscin age-pigment as an index of crustacean age, Marine Biology, 107, 439–442.

    Article  Google Scholar 

  • Shepherd, J.G. (1987a) A weakly parametric method for the analysis of length composition data, in D. Pauly and G.R Morgan (eds.), Length-Based Methods in Fisheries Research, ICLARM Conference Proceedings, 13, Manila.

    Google Scholar 

  • Shepherd, J.G. (1987b) Towards a method for short-tenn forecasting of catch-rates based on length compositions, in D. Pauly and G.R Morgan (eds.), Length-Based Methods in Fisheries Research, ICLARM Conference Proceedings, 13, Manila.

    Google Scholar 

  • Smith, K.L., Carlucci, A.F., Jahnke, R.A. and Craven, D.B. (1987) Organic carbon mineralization in the Santa Catalina Basin: benthic boundary layer metabolism, Deep-Sea Research, 34A, 185–211.

    Article  Google Scholar 

  • Smith, K.L. and Hinga, K.R (1973) Sediment community respiration in the deep-sea, in G.T. Rowe (ed.), The Sea, vol. 8, Wiley-Interscience, New York, pp. 331–370.

    Google Scholar 

  • Smith, K.L., Williams, P.M. and Druffel, E.R.M. (1989) Upward fluxes of particulate organic matter in the deep North Pacific, Nature, 337, 724–726.

    Article  Google Scholar 

  • Thiel, H. (1975) The size structure of the deep-sea benthos, Internationale Revue des Gesamten Hydrobiologie, 60, 575–606.

    Google Scholar 

  • Thiel, H., Lochte, K., Gooday, A.J., Hemleben, C., Mantoura, R.F.G., Turley, C.M., Patching, J.W. and Riemann, F. (1990) Phytodetritus on the deep-sea floor in a central oceanic region of the northeast Atlantic, Biological Oceanography, 6, 203–239.

    Google Scholar 

  • Thorson, G. (1957) Bottom communities (sublittoral or shallow shelf), Geological Society of America, Memoir 67, 461–534.

    Google Scholar 

  • Tunnicliffe, V. (1991) The biology of hydrothermal vents: ecology and evolution, Oceanography and Marine Biology: an Annual Review, 29, 319–407.

    Google Scholar 

  • Tyler, P.A. (1988) Seasonality in the deep sea, Oceanography and Marine Biology: an Annual Review, 26, 227–258.

    Google Scholar 

  • Tyler, P.A., Grant, A., Pain, S.L. and Gage, J.D. (1982) Is annual reproduction in deep-sea echinoderms a response to variability in their environment, Nature, 300, 747–749.

    Article  Google Scholar 

  • Vlas, de J. (1985) Secondary production by siphon regeneration in a tidal flat population of Macoma balthica, Netherlands Journal of Sea Research, 19, 147–164.

    Article  Google Scholar 

  • Warwick, R.M. (1980) Population dynamics and secondary production of benthos, in K.R Tenore and B.C. Coull (eds.), Marine Benthic Dynamics, University of South Carolina Press, Columbia, pp. 1–24.

    Google Scholar 

  • Warwick, R.M. and George, C.L. (1980) Annual macrofauna production in an Abra community, in M.B. Collins (ed.), Embayments and their Environmental Problems, Pergamon Press, Oxford, pp. 517–538.

    Google Scholar 

  • Warwick, R.M. George, C.L. and Davies, J.R (1978) Annual macrofauna production in a Venus community, Estuarine and Coastal Marine Science, 7, 215–241.

    Article  Google Scholar 

  • Warwick, R.M. and Price, R. (1975). Macrofauna production in an estuarine mud-flat, Journal of the Marine Biological Association of the United Kingdom, 55, 1–18.

    Article  Google Scholar 

  • Waters, T.F. (1977) Secondary production in inland waters, Advances in Ecological Research, 10, 91–164.

    Article  Google Scholar 

  • Wildish, D.J. and Peer, D. (1981). Methods for estimating secondary production in marine Amphipoda, Canadian Journal of Fisheries and Aquatic Sciences, 38, 1019–1026.

    Article  Google Scholar 

  • Wilson, R.R. (1982) A comparison of ages estimated by the polarized light method with ages estimated by vertebrae in females of Coryphaenoides acrolepis (Pisces: Macrouridae), Deep-Sea Research, 29A, 1373–1379.

    Article  Google Scholar 

  • Wolff, W. J. & de Wolf, L. (1977), Biomass and production of zoobenthos in the Grevelingen Estuary, the Netherlands, Estuarine and Coastal Marine Science, 10,702–708.

    Google Scholar 

  • Zaika, V.E. (1970) Relationship between the productivity of marine mollusks and their life-span, Oceanology (USSR), 10, 702–708 (in Russian).

    Google Scholar 

  • Zezina, O.N. (1975) On some deep-sea brachiopods from the Gay Head-Bermuda transect, Deep-Sea Research, 22, 903–912.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gage, J.D. (1992). Benthic Secondary Production in the Deep Sea. In: Rowe, G.T., Pariente, V. (eds) Deep-Sea Food Chains and the Global Carbon Cycle. NATO ASI Series, vol 360. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2452-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2452-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5082-1

  • Online ISBN: 978-94-011-2452-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics