Skip to main content

Overcoming the inability of the injured mammalian central nervous system axons to grow into their degenerating environment

  • Chapter
Book cover Development and Regeneration of the Nervous System

Abstract

Spontaneous growth of axons after injury is extremely limited in mammalian central nervous system (CNS). It is now clear, however, that injured CNS axons can elongate, but fail to suitably do so unless their environment is altered. In contrast, goldfish retinal ganglion cells readily regenerate severed axons and make functional connections with their appropriate targets (Attardi and Sperry, 1963). The regenerated axons become myelinated (Murray, 1976) and form a normal pattern of synaptic contacts with their targets (Murray and Edwards, 1982). However, mammalian central neurons have a reduced capacity to regenerate spontaneously after comparable lesions (Grafstein and Ingoglia, 1982; Kiernan, 1979). Optic nerve injury in mammals leads to the death of most of the axotomized neurons, failure of the surviving cells to regrow their axons, and the formation of a dense glial scar at the site of injury (Grafstein and Ingoglia, 1982; Misantone et al., 1984). The ability of the mammalian retinal ganglion cells to survive and regenerate their axons after axotomy can, however, be markedly enhanced by modification of the neuronal environment (Aguayo et al., 1978; Davis et al., 1987; Hadani et al., 1984; Kao et al., 1977; Kromer,1987; Sievers et al., 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguayo, A.J., David, S., Richardson, P., et al. (1978) Axonal elongation in peripheral and central nervous system transplantations. Adv. Cell. Neurobiol., 3, 215–21.

    Google Scholar 

  • Assia, E., Rosner, M., Belkin, M., et al. (1988) Temporal parameters of low-energy laser irradiation for optimal delay of posttraumatic degeneration of rat optic nerve. Brain Res., 476, 205–12.

    Article  Google Scholar 

  • Attardi, D.G. and Sperry, R.W. (1963) Preferential selection of central pathways by regenerating optic nerve. Exp. Neurol., 7, 46–64.

    Article  PubMed  CAS  Google Scholar 

  • Caroni, R. and Schwab, M.E. (1985) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading.J. Cell Biol., 196,1281–88.

    Google Scholar 

  • Cohen, A. and Schwartz, M. (1989) Conditioned media of regenerating fish optic nerves modulate laminin levels in glial cells. J. Neurosci. Res., 22, 269–73.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, A., Sivron, T., Duvdevani, R., et al. (1990) Oligodendrocyte cytotoxin associated with fish optic nerve regeneration: implications for mammalian CNS regeneration. Brain Res., 537, 24–32.

    Article  PubMed  CAS  Google Scholar 

  • Davis, G.E., Blaker, S.N., Engvall, E., et al. (1987) Human amnion membrane serves as a substratum for growing axons in vitro and in vivo. Science, 236, 1106–9.

    CAS  Google Scholar 

  • Eng, L.F., Reier, P.J. and Houler, J.D. (1987) Astrocyte activation and fibrous gliosis: glial fibrillary acidic protein immunostaining of astrocytes following intraspinal cord grafting of fetal CNS tissues. In: Sci l, F.J., Herbert E. and Carlson, B.M., eds. Neural regeneration. Progress in brain research, Vol. 71 Elsevier: New York, pp. 439–55.

    Chapter  Google Scholar 

  • Grafstein, B. and Ingoglia, N.A. (1982) Intracranial transection of the optic nerve in adult mice: preliminary observations. Exp. Neurol., 76, 318–30.

    Article  PubMed  CAS  Google Scholar 

  • Hadani, M., Harel, A., Solomon, A., et al. (1984) Substances originating from the optic nerve of neonatal rabbit induce regeneration-associated response in the injured optic nerve of adult rabbit. Proc. Natl. Acad. Sci . USA, 81, 7965–9.

    Article  PubMed  CAS  Google Scholar 

  • Kao, C.C., Change, L.W. and Bloodworth, J.M.B. (1977) Axonal regeneration across transected mammalian spinal cords: an electron microscopic study of delayed microsurgical nerve grafting. Exp. Neurol., 54, 591–615.

    Article  PubMed  CAS  Google Scholar 

  • Kiernan, J.A. (1979) Hypotheses concerned with axonal regeneration in the mammalian nervous system. Biol. Rev., 54,155–97.

    Article  PubMed  CAS  Google Scholar 

  • Kromer, L.F. (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science, 235, 214–16.

    Article  PubMed  CAS  Google Scholar 

  • Lavie, V., Harel, A., Doron, A., et al. (1987) Morphological response of injured adult rabbit optic nerve to implants containing media conditioned by growing optic nerves. Brain Res., 419,166–73.

    Article  PubMed  CAS  Google Scholar 

  • Lavie, V., Murray, M., Solomon, A., et al. (1990) Growth of injured rabbit optic axons within their degenerating optic nerve. J. Comp. Neurol., 298,293–314.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R.H., Abney, E.R., David, S., et al. (1986) Is reactive gliosis a property of a distinct subpopulation of astrocytes? J. Neurosci., 6, 22–9.

    PubMed  CAS  Google Scholar 

  • Misantone, L.J., Gershenbaum, M. and Murray, M. (1984) Viability of retinal ganglion cells after nerve crush in adult rats. J. Neurocytol., 13, 449–65.

    Article  PubMed  CAS  Google Scholar 

  • Murray, M. (1976) Regeneration of retinal axons into the goldfish optic tectum. J. Comp. Neurol, 168,175–96.

    Article  PubMed  CAS  Google Scholar 

  • Murray, M. (1982) A quantitative study of regenerative sprouting by optic axons in goldfish. J. Comp. Neurol., 209, 352–62.

    Article  PubMed  CAS  Google Scholar 

  • Murray, M. and Edwards, M.E. (1982) A quantitative study of innervation of the goldfish optic tectum following optic nerve crush. J. Comp. Neurol., 209,363–73.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, M.E. and Thoenen, H. (1985) Dissociated neurons regenerate into sciatic but not optic nerve expiants in culture irrespective of neurotrophic factors. J. Neurosci., 5, 2415–23.

    PubMed  CAS  Google Scholar 

  • Schwab, M.E. and Caroni, P. (1988) Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J. Neurosci., 8, 2381–93.

    CAS  Google Scholar 

  • Schwartz, M., Belkin, M., Harel, A.,et al. (1985) Regenerating fish optic nerves and a regeneration-like response in injured optic nerves of adult rabbits. Science, 228, 600–3.

    Article  PubMed  CAS  Google Scholar 

  • Sievers, J., Hausmann, B., Unsicker, K., et al. (1987) Fibroblast growth factors promote the survival of adult rat retinal ganglion cells after transection of the optic nerve. Neurosci. Lett., 76, 157–62.

    Article  PubMed  CAS  Google Scholar 

  • Sivron, T., Cohen, A., Duvdevani, R., et al. (1990) Glial response to axonal injury: in vitro manifestation and implication for regeneration. Glia, 3, 267–76.

    Article  PubMed  CAS  Google Scholar 

  • Sivron, T., Cohen, A., Hirschberg, D.L., et al. (1991) Soluble factor(s) produced in injured fish optic nerve regulate the postinjury number of oligodendrocytes: possible role of macrophages.

    Google Scholar 

  • Vidal-Sanz, M., Bray, M.B., Villegas-Pérez, M.P., et al. (1987) Axonal regeneration and synapse formation in superior colliculus by retinal ganglion cells in the adult rat. J. Neurosci., 7, 2894–909.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 S. Nona, J. Cronly-Dillon, M. Ferguson, C. Stafford

About this chapter

Cite this chapter

Schwartz, M. et al. (1992). Overcoming the inability of the injured mammalian central nervous system axons to grow into their degenerating environment. In: Nona, S., Cronly-Dillon, J., Stafford, C., Ferguson, M. (eds) Development and Regeneration of the Nervous System. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2348-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2348-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5037-1

  • Online ISBN: 978-94-011-2348-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics