Skip to main content

The genetic consequences of dispersal

  • Chapter

Abstract

What are the genetic consequences of dispersal? This is a question which includes many controversial components. Does environmental heterogeneity maintain genetic variation, and if so, how does dispersal interact with this heterogeneity to affect levels of variability? Does gene flow bind a species together into a homogeneous unit, or can adaptation and divergence occur despite free intermingling? Do genetic factors, such as levels of inbreeding, or of variability, determine the evolution of dispersal itself? Several chapters in this book (e.g. Chapters 1, 4, 5 and 9) consider this question. This chapter therefore concentrates on the effects of environmental heterogeneity and gene flow on patterns of genetic variation, rather than on the evolution of dispersal itself; examples are drawn from a wide variety of taxa.

Keywords

  • Gene Flow
  • Effective Population Size
  • Hybrid Zone
  • Neighbourhood Size
  • Spatial Differentiation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-011-2338-9_3
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-94-011-2338-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, RJ. (1981) Chromosome flow between chromosomally characterized taxa of a volant mammal, Uroderma bilobatum (Chiroptera: Phyllostomatidae). Evolution, 35, 296–305.

    CrossRef  Google Scholar 

  • Barrett, J.A. (1980) Pathogen evolution in multilines and variety mixtures. Zeitschrft fur Pflanzenkrankheiten und Pflanzenschutz, 87, 383–96.

    Google Scholar 

  • Barton, N.H. (1979) Gene flow past a cline. Heredity, 43, 333–9.

    CrossRef  Google Scholar 

  • Barton, N.H. (1982) The structure of the hybrid zone in Uroderma bilobatum. Evolution, 36, 863–6.

    CrossRef  Google Scholar 

  • Barton, N.H. (1983) Multilocus clines. Evolution, 37, 454–71.

    CrossRef  Google Scholar 

  • Barton, N.H. and Bengtsson, B.O. (1986) The barrier to genetic exchange between hybridizing populations. Heredity, 57, 357–76.

    CrossRef  PubMed  Google Scholar 

  • Barton, N.H. and Charlesworth, B. (1984) Genetic revolutions, founder effects, and speciation. Annual Review of Ecology and Systematics, 15, 133–64.

    CrossRef  Google Scholar 

  • Barton, N.H. and Clark, A. (1990) Population structure and process in evolution, in Population Biology (eds K. Wohromann and S.K. Jain), Springer-Verlag, Berlin, pp. 115–74.

    CrossRef  Google Scholar 

  • Barton, N.H., Halliday, R.B. and Hewitt, G.M. Spatial patterns and population structure. III. Electrophoretic variation in the grasshopper Podisma pedestris. (in preparation).

    Google Scholar 

  • Barton, N.H. and Hewitt, G.M. (1981) A chromosomal cline in the grasshopper Podisma pedestris. Evolution, 35, 1008–18.

    CrossRef  Google Scholar 

  • Barton, N.H. and Hewitt, G.M. (1985) Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113–48.

    CrossRef  Google Scholar 

  • Barton, N.H. and Hewitt, G.M. (1989) Adaptation, speciation, and hybrid zones. Nature, 341, 497–503.

    CrossRef  PubMed  CAS  Google Scholar 

  • Barton, N.H. and Slatkin, M. (1986) A quasi-equilibrium theory of the distribution of rare alleles in subdivided populations. Heredity, 56, 409–16.

    CrossRef  PubMed  Google Scholar 

  • Bazykin, A.D. (1969) Hypothetical mechanism of speciation. Evolution, 23, 685–7.

    CrossRef  Google Scholar 

  • Bengtsson, B.O. (1985) The flow of genes through a genetic barrier, Evolution: essays in honour of J. Maynard Smith (eds P. Harvey, M. Slatkin and J. Greenwood), Cambridge University Press, Cambridge, pp. 31–42.

    Google Scholar 

  • Bush, G.L., Case, S.M., Wilson, A.C. and Patton, J.L. (1977) Rapid speciation and chromosomal evolution in mammals. Proceedings of the National Academy of Sciences, USA, 74, 3942–6.

    CrossRef  CAS  Google Scholar 

  • Cavalli Sforza, L.L. (1969) Genetic drift in an Italian population: with biographical sketch. Scientific American, 221, 30–7.

    CrossRef  PubMed  CAS  Google Scholar 

  • Charlesworth, B., Lande, R. and Slatkin, M. (1982) A neo-Darwinian commentary on macroevolution. Evolution, 36, 474–98.

    CrossRef  Google Scholar 

  • Coyne, J.A. (1984) Correlation between heterozygosity and rate of chromosome evolution in animals. American Naturalist, 123, 725–9.

    CrossRef  Google Scholar 

  • Crow, J.F. and Kimura, M. (1970) An Introduction to Population Genetics Theory, Harper and Row, New York.

    Google Scholar 

  • Darwin, C. (1968) The Origin of Species by Means of Natural Selection, 1st edn (reprint), Penguin, London. (First published in 1859, J. Murray, London.)

    Google Scholar 

  • Dillon, R.T. (1984) Geographic distance, environmental difference, and divergence between isolated populations. Systematic Zoology, 33, 69–82.

    CrossRef  Google Scholar 

  • Dobzhansky, T. (1940) Speciation as a stage in evolutionary divergence. American Naturalist, 74, 312–21.

    CrossRef  Google Scholar 

  • Dykhuizen, D.E. (1990) Experimental studies of natural selection in bacteria. Annual Review of Ecology and Systematics, 21, 373–98.

    CrossRef  Google Scholar 

  • Ehrlich, P.R. and Raven, P.H. (1969) Differentiation of populations. Science, 165, 1228–32.

    CrossRef  PubMed  CAS  Google Scholar 

  • Endler, J.A. (1977) Geographic Variation, Speciation, and Clines, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Felsenstein, J. (1976) The theoretical population genetics of variable migration and selection. Annual Review of Genetics, 10, 253–80.

    CrossRef  PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1981) Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution, 35, 124–38.

    CrossRef  Google Scholar 

  • Fisher, R.A. (1930) The Genetical Theory of Natural Selection, Oliver and Boyd, London.

    Google Scholar 

  • Fisher, R.A. (1937) The wave of advance of advantageous genes. Annals of Eugenics, 7, 355–69.

    Google Scholar 

  • Futuyma, D.J. and Mayer, G.C. (1980) Non-allopatric speciation in animals. Systematic Zoology, 29, 254–71.

    CrossRef  Google Scholar 

  • Futuyma, D.J., Leipertz, S.L. and Mitter, C. (1981) Selective factors affecting clonal variation in the fall cankerworm Alsophila pometaria, (Lepidoptera: Geometridae). Heredity, 47, 161–72.

    CrossRef  Google Scholar 

  • Gaines, M.S. and McClenaghan, L.R. (1980) Dispersal in small mammals. Annual Review of Ecology and Systematics, 11, 163–96.

    CrossRef  Google Scholar 

  • Gaines, M.S. and Whittam, T. (1980) Genetic changes in fluctuating vole populations. Genetics, 96, 767–78.

    PubMed  CAS  Google Scholar 

  • Grant, V. (1980) Gene flow and the homogeneity of species populations. Biol. Zbl. 99, 157–69.

    Google Scholar 

  • Hafner, J.C. (1982) Genetic interaction at a contact zone of Uroderma bilobatum (Chiroptera: Phyllostomatidae). Evolution, 36, 852–66.

    CrossRef  Google Scholar 

  • Hafner, J.C., Hafner, D.J., Patton, J.L. and Smith, M.F. (1983) Contact zones and the genetics of differentiation in the pocket gopher Thomomys bottae (Rodentia: Geomyidae). Systematic Zoology, 32, 1–20.

    CrossRef  Google Scholar 

  • Haldane, J.B.S. (1948) The theory of a cline. Journal of Genetics, 48, 277–84.

    CrossRef  PubMed  CAS  Google Scholar 

  • Haldane, J.B.S. and Jayakar, S.D. (1963) Polymorphism due to selection of varying direction. Journal of Genetics, 58, 237–42.

    CrossRef  Google Scholar 

  • Hartl, D.A. and Dykhuizen, D. (1981) Potential for selection among nearly neutral allozymes of 6 phosphoglucomutase dehydrogenase in Escherischia coli. Proceedings of the National Academy of Sciences, USA, 78, 6344–88.

    CrossRef  CAS  Google Scholar 

  • Hedrick, P.W., Ginevan, M.E. and Ewing, E.P. (1976) Genetic polymorphism in heterogeneous environments. Annual Review of Ecology and Systematics, 7, 1–32.

    CrossRef  Google Scholar 

  • Hockstra, R.F., Bijlsma, R. and Dolman, A.J. (1985) Polymorphism from environmental heterogeneity: models are only robust if the heterozygote is close in fitness to the favoured homozygote in each environment. Genetical Research, 45, 299–314.

    CrossRef  Google Scholar 

  • Karlin, S. (1982) Classification of selection-migration structures and conditions for a protected polymorphism. Evolutionary Biology, 14, 61–203.

    Google Scholar 

  • Kimura, M. (1983).The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge.

    CrossRef  Google Scholar 

  • Kimura, M. and Maruyama, T. (1971) Pattern of neutral polymorphism in a geographically structured population. Genetic Reseach, 18, 125–31.

    CrossRef  CAS  Google Scholar 

  • Kimura M. and Weiss, G.H. (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561–76.

    PubMed  CAS  Google Scholar 

  • Lande, R. (1979) Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33, 234–51.

    CrossRef  Google Scholar 

  • Levene, H. (1953) Genetic equilibrium when more than one ecological niche is available. American Naturalist, 87, 331–3.

    CrossRef  Google Scholar 

  • Lewontin, R.C. and Krakauer, J. (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics, 74, 175:195.

    Google Scholar 

  • Li, W.H. and Nei, M. (1974) Stable linkage disequilibrium without epistasis in subdivided populations. Theoretical Population Biology, 6, 173–83.

    CrossRef  PubMed  CAS  Google Scholar 

  • Malecot, G. (1948) La Mathematique de l’Heredite, Masson et Cie, Paris.

    Google Scholar 

  • Martin, M.J., Pérez-Tomé, J.M. and Toro, M.A. (1988) Competition and genotypic variability in Drosophila melanogaster. Heredity, 60, 119–24.

    CrossRef  PubMed  Google Scholar 

  • Maynard Smith, J. (1966) Sympatric speciation. American Naturalist, 100, 637–50.

    CrossRef  Google Scholar 

  • Maynard Smith, J. and Haigh, J. (1974) The hitch-hiking effect of a favourable gene. Genetical Research, 18, 125–31.

    Google Scholar 

  • Maynard Smith, J. and Hoekstra, R. (1980) Polymorphism in a varied environment: how robust are the models? Genetical Research, 35, 45–57.

    CrossRef  Google Scholar 

  • Mayr, E. (1942) Systematics and the Origin of Species, Columbia University Press, New York.

    Google Scholar 

  • Mayr, E. (1982) The Growth of Biological Thought: diversity, evolution and inheritance, Belknap Press, Cambridge, Massachusetts.

    Google Scholar 

  • Nadeau, J.H. and Collins, R.L. (1983) Does associative overdominance account for the extensive polymorphism of H-2 linked loci? Genetics, 105, 241–4.

    PubMed  CAS  Google Scholar 

  • Nadeau, J.H., Collins, R.L. and Klein, J. (1982) Organization and evolution of the mammalian genome. I. Polymorphism of the H-2 linked loci. Genetics, 102, 583–98.

    PubMed  CAS  Google Scholar 

  • Nagylaki, T. (1978) Conditions for the existence of clines. Genetics, 80, 595.

    Google Scholar 

  • Neel, J.V. (1978) The population structure of an Amerindian tribe, the Yanomama. Annual Review of Genetics, 12, 365–413.

    CrossRef  PubMed  CAS  Google Scholar 

  • Nei, M., Maruyama, T. and Chakraborty, R. (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.

    CrossRef  Google Scholar 

  • Nei, M. and Murato, M. (1966) Effective population size when fertility is inherited. Genetic Research, 8, 257–60.

    CrossRef  CAS  Google Scholar 

  • Nevo, E. (1978) Genetic variation in natural populations: patterns and theory. Theoretical Population Biology, 13, 121–77.

    CrossRef  PubMed  CAS  Google Scholar 

  • Nevo, E., Beiles, A. and Ben-Shlomo, R. (1984) The evolutionary significance of genetic diversity, ecological, demographic and life history correlates. Lecture Notes in Biomathematics, Vol. 53, Springer-Verlag, Berlin, pp. 13–213.

    Google Scholar 

  • Patton, J.L. and Feder, J.H. (1978) Genetic divergence between populations of the pocket gopher, Thomomys umbrinus (Richardson). Zeitschrift Saugertierkind, 43, 17–30.

    Google Scholar 

  • Patton, J.L. and Yang, S.Y. (1977) Genetic variation in Thomomys bottae pocket gophers: macrogeographic patterns. Evolution, 31, 697–720.

    CrossRef  Google Scholar 

  • Pérez-Tomé, J.M. and Toro, M. (1982) Competition of similar and non-similar genotypes. Nature, 299, 153–4.

    CrossRef  Google Scholar 

  • Pounds, J.A. and Jackson, J.F. (1981) Riverine barriers to gene flow and the differentiation of fence lizard populations. Evolution, 35, 516–28.

    CrossRef  Google Scholar 

  • Provine, W.B. (1981) Origins of ‘The Genetics of Natural Populations’ series, in Dobzhansky’s Genetics of Natural Populations, (eds R.C. Lewontin, J.A. Moore, W.B. Provine and B. Wallace), Columbia University Press, New York, pp. 1–85.

    Google Scholar 

  • Rouhani, S. and Barton, N.H. (1987) Speciation and the ‘shifting balance’ in a continuous population. Theoretical Population Biology, 31, 465–92.

    CrossRef  Google Scholar 

  • Selander, R.K. (1970) Behaviour and genetic variation in natural populations. American Zoologist, 10, 53–66.

    PubMed  CAS  Google Scholar 

  • Selander, R.K. and Kaufman, D.W. (1973) Genie variability and strategies of adaptation in animals. Proceedings of the National Academy of Sciences, USA, 70, 1875–7.

    CrossRef  CAS  Google Scholar 

  • Slatkin, M. (1973) Gene flow and selection in a cline. Genetics, 75, 733–56.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. (1975) Gene flow and selection in a two locus system. Genetics, 81, 209–22.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. (1982) Estimating levels of gene flow in natural populations. Genetics, 99, 323–35.

    Google Scholar 

  • Slatkin, M. (1985a) Rare alleles as indicators of gene flow. Evolution, 39, 53–65.

    CrossRef  Google Scholar 

  • Slatkin, M. (1985b) Gene flow in natural populations. Annual Review of Ecology and Systematics, 16, 393–430.

    CrossRef  Google Scholar 

  • Smith, M.F. (1979) Geographic variation in genie and morphological characters in Peromyscus californiens. Journal of Mammalogy, 60, 705–22.

    CrossRef  Google Scholar 

  • Sokal, R.R. and Wartenberg, D.E. (1983) A test of spatial autocorrelation analysis using an isolation by distance model. Genetics, 105, 219–37.

    PubMed  CAS  Google Scholar 

  • Spirito, F., Rossi, C. and Rizzoni, M. (1983) Reduction of gene flow due to the partial sterility of heterozygotes for a chromosome mutation. I. Studies on a ‘neutral’ gene not linked to the chromosome mutation. Evolution, 37, 785–97.

    CrossRef  Google Scholar 

  • Szymura, J. and Barton, N. (1986) Genetic analysis of a hybrid zone between the fire-bellied toad (Bombina bombina) and the yellow-bellied toad (B. Variegata) in Southern Poland. Evolution, 40, 1141–59.

    CrossRef  Google Scholar 

  • Sumner, F.B. (1929) The analysis of a concrete case of intergrades between two subspecies. Proceedings of the National Academy of Sciences, USA, 15, 110.

    CrossRef  CAS  Google Scholar 

  • Turner, J.R.G. (1981) Adaptation and evolution in Heliconius, a defence of neo-Darwinism. Annual Review of Ecology and Systematics, 12, 99–122.

    CrossRef  Google Scholar 

  • Wagner, M. (1841) Reisen im der Regentschaft Algier dem Jahren 1836, 1837, und 1838, Leopold Voss, Leipzig.

    CrossRef  Google Scholar 

  • Wallace, B. (1970) Genetic Load: its biological and conceptual aspects, Prentice-Hall, New York.

    Google Scholar 

  • Wallace, B. (1975) Hard and soft selection revisited. Evolution, 29, 465–73.

    CrossRef  Google Scholar 

  • White, M.J.D. (1968) Models of speciation. Science, 158, 1068–70.

    Google Scholar 

  • White, M.J.D. (1978) Modes of Speciation, W.H. Freeman, San Francisco.

    Google Scholar 

  • Wills, C. (1978) Rank-order selection is capable of maintaining all genetic polymorphism. Genetics, 89, 403–17.

    PubMed  CAS  Google Scholar 

  • Wilson, A.C., Bush, G.L., Case, S.M. and King, M. (1975) Social structuring of mammalian populations and the rate of chromosomal evolution. Proceedings of the National Academy of Sciences, USA, 72, 5061–5.

    CrossRef  CAS  Google Scholar 

  • Wright, S. (1931) Evolution in Mendelian populations. Genetics, 16, 97–159.

    PubMed  CAS  Google Scholar 

  • Wright, S.. (1943) Isolation by distance. Genetics, 28, 114–38.

    PubMed  CAS  Google Scholar 

  • Wright, S. (1946) Isolation by distance under diverse systems of mating. Genetics, 31, 39–59.

    Google Scholar 

  • Wright, S. (1978) Evolution and the Genetics of Populations. IV. Variability within and among Natural Populations, University of Chicago Press, Chicago.

    Google Scholar 

  • Wright, S., Dobzhansky, T. and Hovanitz, W.H. (1942) The allelism of lethals in the third chromosome of Drosophila pseudoobscura. Genetics, 27, 363–94.

    PubMed  CAS  Google Scholar 

  • Yokoyama, S. (1979) The rate of allelism of lethal genes in a geographically structured population. Genetics, 93, 245–62.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barton, N.H. (1992). The genetic consequences of dispersal. In: Stenseth, N.C., Lidicker, W.Z. (eds) Animal Dispersal. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2338-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2338-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5033-3

  • Online ISBN: 978-94-011-2338-9

  • eBook Packages: Springer Book Archive