Skip to main content

An entomological perspective on animal dispersal

  • Chapter
Animal Dispersal

Abstract

Mammalian, avian, entomological, and botanical views of the movements of organisms have developed simultaneously during the past century (Rankin, 1985b). Although the paths have often been separate, links among the taxonomic viewpoints have provided new insights and the impetus for studies in other taxa. Here, we first sketch historical differences and similarities in the approaches of studies of movements of different taxa. We concentrate on why divergent views have developed in the studies of birds, mammals, and insects. We then provide a summary of what studies of insects have contributed to the understanding of the ecology and evolution of the movements of organisms. Finally, we point to areas where interactions among students of different taxa may be especially rewarding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammar, E.D. (1973) Factors related to the two wing forms in Javesella pellucida (Fab.) (Homoptera: Delphacidae). Zeitschrift für Angiwanch Entimologie, 74, 211–6.

    Article  Google Scholar 

  • Andersen, N.M. (1973) Seasonal polymorphism and developmental changes in bivoltine pondskaters (Hem. Gerridae) Entomological Scandinavia, 4, 1–20.

    Article  Google Scholar 

  • Andrewartha, H.G. and Birch, L.C. (1954) The Distribution and Abundance of Animals, University of Chicago Press, Chicago.

    Google Scholar 

  • Andrewartha, H.G. and Birch, L.C. (1984) The Ecological Web, University of Chicago Press, Chicago.

    Google Scholar 

  • Antolin, M.F. and Strong, D.R. (1987) Long-distance dispersal by a parasitoid (Anagrus delicatus, Mymaridae) and its host. Oecologia, 73, 288–92.

    Article  Google Scholar 

  • Baker, R.R. (1978) The Evolutionary Ecology of Animal Migration, Holmes & Meier, New York.

    Google Scholar 

  • Begon, M. (1976) Dispersal, density, and microdistribution in Drosophila subobscura Collin. Journal of Animal Ecology, 45, 441–56.

    Article  Google Scholar 

  • Brower, L.P. (1985) New perspectives on the migration biology of the monarch butterfly, Danaus plexippus L, in Migration: mechanisms and adaptive significance (ed. M.A. Rankin), Contributions in Marine Science, Suppl. 27, pp. 748–85.

    Google Scholar 

  • Brown, E.S. (1951) The relation between migration-rate and type of habitat in aquatic insects, with special reference to certain species of Corixidae. Proceedings of the Zoological Society of London, 121, 539–45.

    Article  Google Scholar 

  • Bull, J.J., Thompson, C., Ng, D. and Moore, R. (1987) A model for natural selection of genetic migration. American Naturalist, 129, 143–57.

    Article  Google Scholar 

  • Caldwell, R.L. (1974) A comparison of the migratory strategies of two milkweed bugs, in The Experimental Analysis of Insect Behavior (ed. L.B. Browne), Springer, Heidelberg, pp. 304–16.

    Chapter  Google Scholar 

  • Caldwell, R.L. and Hegmann, J.P. (1969) Heritability of flight duration in the milkweed bug, Lygaeus kalmii. Nature, 223, 91–2.

    Article  Google Scholar 

  • Caldwell, R.L. and Rankin, M.A. (1974) Separation of migratory from feeding and reproductive behaviour in Oncopeltus fasciatus. Journal of Comparative Physiology, 88, 383–94.

    Article  Google Scholar 

  • Carson, H.L., Hardy, D.E., Spieth, H.T. and Stone, W.S. (1970) The evolutionary biology of the Hawaiian Drosophilidae, in Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky (eds M.K. Hecht and W.C. Steere), Appleton-Century-Crofts, New York, pp. 437–543.

    Chapter  Google Scholar 

  • Cohen, D. (1967) Optimization of seasonal migratory behavior. American Naturalist, 101, 5–17.

    Article  Google Scholar 

  • Cole, L.C. (1954) The population consequences of life history phenomena. Quarterly Review of Biology, 29, 103–37.

    Article  PubMed  CAS  Google Scholar 

  • Coyne, J.A., Boussy, I.A., Prout, T. et al. (1982) Long-distance migration of Drosophila. American Naturalist, 119, 589–95.

    Google Scholar 

  • Coyne, J.A., Bryant, S.H. and Turelli, M. (1987) Long-distance migration of Drosophila. 2. Presence in desolate sites and dispersal near a desert oasis. American Naturalist, 129, 847–61.

    Article  Google Scholar 

  • Coyne, J.A. and Milstead, B. (1987) Long-distance migration of Drosophila. 3. Dispersal of D. melanogaster alleles from a Maryland orchard. American Naturalist, 130, 70–82.

    Article  Google Scholar 

  • Davis, M.A. (1984) The flight and migration ecology of the red milkweed beetle (Tetraopes tetraopthalmus). Ecology, 65, 230–4.

    Article  Google Scholar 

  • deKort, C.A.D. (1969) Hormones and the structural and biochemical properties of the flight muscle of the Colorado beetle. Mededelingen Landboushogeshool Wageningen 69(2), 1–63.

    Google Scholar 

  • den Boer, P.J. (1968) Spreading the risk and stabilization of animal numbers. Acta Biotheoretica, 18, 165–94.

    Article  Google Scholar 

  • Denno, R.F. (1978) The optimum population strategy for planthoppers (Homoptera: Delphacidae) in stable marsh habitats. Canadian Entomologist, 110, 135-42.

    Article  Google Scholar 

  • Denno, R.F. (1983) Tracking variable host plants in space and time, in Variable Plants and Herbivores in Natural and Managed Systems (eds R.F. Denno and M.S. McClure), Academic Press, New York, pp. 291–341.

    Google Scholar 

  • Denno, R.F. (1985) Fitness, population dynamics, and migration in planthoppers: the role of host plants, in Migration: mechanics and adaptive significance (ed. M.A. Rankin), Contributions in Marine Science, Vol. 27, Suppl., pp. 623–40.

    Google Scholar 

  • Denno, R.F., Douglass, L.W. and Jacobs, D. (1985) Crowding and host plant nutrition: environmental determinants of wing-form in Prokelisia marginata. Ecology, 66, 1588–96.

    Article  Google Scholar 

  • Denno, R.F., Olmstead, K.L. and McCloud, E.S. (1989) Reproductive cost of flight capability: A comparison of life history traits in wing dimorphic planthoppers. Ecology and Entomology, 14, 31–44.

    Article  Google Scholar 

  • Denno, R.F. and Roderick, G.K. (1990) Population biology of planthoppers. Annual Review of Entomology, 35, 489–520.

    Article  Google Scholar 

  • Denno, R.F. and Roderick, G.K. (1991) Influence of patch size, vegetation texture, and host plant architecture on the diversity, abundance, and life history styles of sap-feeding herbivores, in Habitat Structure: the physical arrangement of objects in time and space in (eds H.R. Mushinsky, S. Bell and E.D. McCoy), Chapman & Hall, London, in press.

    Google Scholar 

  • Denno, R.F., Roderick, G.K., Olmstead, K.L. and Döbel, H.G. (1991) Density-related migration in planthoppers (Homoptera: Delphacidae): The role of habitat persistence. American Naturalist, in press.

    Google Scholar 

  • Dingle, H. (1972) Migration strategies of insects. Science, 175, 1327–35.

    Article  PubMed  CAS  Google Scholar 

  • Dingle, H. (1974) The experimental analysis of migration and life history strategies in insects, in The Experimental Analysis of Insect Behaviour (ed. L. Barton Browne), Springer-Verlag, Heidelberg, pp. 329–42.

    Chapter  Google Scholar 

  • Dingle, H. (1978) Migration and diapause in tropical, temperate, and island milkweed bugs, in The Evolution of Insect Migration and Diapause (ed. H. Dingle), Springer-Verlag, New York, pp. 329–42.

    Chapter  Google Scholar 

  • Dingle, H. (1979) Adaptive variation in the evolution of insect migration, in Movement of Highly Mobile Insects: concepts and methodology in research (eds R.J. Rabb and G.G. Kennedy), North Carolina State University Press, Raleigh, North Carolina, pp. 64–87.

    Google Scholar 

  • Dingle, H. (1980) Ecology and evolution of migration, in Animal Migration, Orientation, and Navigation (ed. S.A. Gauthreaux Jr), Academic Press, New York, pp. 1–101.

    Google Scholar 

  • Dingle, H. (1981) Geographical variation and behavioral flexibility in milkweed bug life histories, in Insect Life History Patterns (eds R.F. Denno and H. Dingle), Springer-Verlag, New York, pp. 57–73.

    Chapter  Google Scholar 

  • Dingle, H. (1982) Function of migration in the seasonal synchronization of insects. Entomological Experimental Applications, 31, 36–48.

    Article  Google Scholar 

  • Dingle, H. (1984a) Behavior, genes, and life histories: Complex adaptations in uncertain environments, in A New Ecology: novel approaches to interactive systems (eds P.W. Price, C.N. Slobodchikoff and W.S. Gaud), Wiley, New York, pp. 169–94.

    Google Scholar 

  • Dingle, H. (1984b) Migration, in Comprehensive Insect Physiology, Biochemistry, and Pharmacology (eds G.A. Kerkut and L.I. Gilbert), Pergamon Press, Oxford, pp. 375–415.

    Google Scholar 

  • Dingle, H. (1986) The evolution and genetics of insect migration, in Insect Flight, Dispersal, and Migration (ed. W. Danthanarayana), Springer-Verlag, New York, pp. 11–26.

    Google Scholar 

  • Dingle, H. and Arora, G. (1973) Experimental studies of migration in the bugs of the genus Dysdercus. Oecologia, 12, 119–40.

    Article  Google Scholar 

  • Dingle, H., Blakley, N.R. and Miller, E.R. (1980) Variation in body size and flight performance in milkweed bugs (Oncopeltus). Evolution, 34, 371–85.

    Article  Google Scholar 

  • Dingle, H., Evans, K.E. and Palmer, J.O. (1988) Responses to selection among life-history traits in a nonmigratory population of milkweed bugs (Oncopeltus fasciatus). Evolution, 42, 79–92.

    Article  Google Scholar 

  • Dixon, A.F.G. (1972) Fecundity of brachypterous and macropterous alatae in Drepanosiphum dixoni (Callaphididae, Aphididae). Entomological Experimental Applications, 15, 335–40.

    Article  Google Scholar 

  • Dixon, A.F.G. (1985) Aphid Ecology, Blackie and Sons, London.

    Google Scholar 

  • Dobzhansky, T. and Wright, S. (1943) Genetics of natural populations. X. Dispersion rates in Drosophila pseudoobscura. Genetics, 28, 304–40.

    CAS  Google Scholar 

  • Ehrlich, P.R., White, R.R., Singer, M.C. et al. (1975) Checkerspot butterflies: a historical perspective. Science, 188, 221–8.

    Article  PubMed  CAS  Google Scholar 

  • Falconer, D.S. (1981) Introduction to Quantitative Genetics, 2nd edn, Longman, London.

    Google Scholar 

  • Fisher, R.A. (1958) The Genetical Theory of Natural Selection, Dover, New York.

    Google Scholar 

  • Gatehouse, A.G. (1986) Migration in the African armyworm Spodoptera exempta: Genetic determination of migratory capacity and a new synthesis, in Insect flight: dispersal and migration (ed. W. Danthanarayana) Springer-Verlag, Berlin, pp. 128–44.

    Google Scholar 

  • Gatehouse, A.G. (1991) Genes, Environment and Insect Flight, CRC Handbook.

    Google Scholar 

  • Gauthreaux, S.A. Jr (ed.) (1980) Animal Migration, Orientation, and Navigation, Academic Press, New York, 387 pp.

    Google Scholar 

  • Giesel, J.T. (1976) Reproductive strategies as adaptations to life in temporally heterogeneous environments. Annual Review of Ecology and Systematics, 7, 57–79.

    Article  Google Scholar 

  • Hagen, K.S. (1962) Biology and ecology of predaceous Coccinellidae. Annual Review of Entomology, 7, 289–326.

    Article  Google Scholar 

  • Harrison, R.G. (1979) Flight polymorphism in the field cricket Gryllus pennsylvanicus. Oecologia, 40, 125–32.

    Google Scholar 

  • Harrison, R.G. (1980) Dispersal polymorphism in insects. Annual Review of Ecology and Systematics, 11, 95–118.

    Article  Google Scholar 

  • Heape, W. (1931) Emigration, Migration and Nomadism, Heffer, Cambridge.

    Google Scholar 

  • Hegmann, J.P. and Dingle, H. (1982) Phenotypic and genetic covariance structure in milkweed bug life history traits, in Genetics and Evolution of Life Histories, (eds H. Dingle and J.P. Hegmann), Springer-Verlag, New York, pp. 177–84.

    Chapter  Google Scholar 

  • Holekamp, K.E. (1986) Proximal causes of natal dispersal in Belding’s ground squirrels (Spermophilus beldingi) Ecological Monographs, 56, 365–91.

    Article  Google Scholar 

  • Honek, A. (1976) The regulation of wing polymorphism in natural populations of Phyrrhocoris apterus (Heteroptera, Pyrrhocoridae) Zoologische Jahrbuch der Systematic, 103, 547–70.

    Google Scholar 

  • Honek, A. (1979) Independent response of 2 characters to selection for insensitivity to photoperiod in Pyrrhocoris apterus. Experienta, 35, 762–3.

    Article  Google Scholar 

  • Horn, H.S. (1983) Some theories about dispersal, in Animal Movements (eds I. Swingland and P.J. Greenwood), Oxford University Press, Oxford, pp. 54–62.

    Google Scholar 

  • Istock, C.A. (1978) Fitness variation in a natural population, in Evolution of Insect Migration and Diapause (ed. H. Dingle), Springer-Verlag, New York, pp. 171–90.

    Chapter  Google Scholar 

  • Jackson, D.J. (1952) Observations on the capacity for flight of water beetles. Proceedings of the Royal Society of London (A), 27, 57–70.

    Google Scholar 

  • Jarvinen, O. and Vepsäläinen, K. (1976) Wing dimorphism as an adaptive strategy in water-striders. Hereditas, 84, 61–8.

    Article  Google Scholar 

  • Johnson, C.G. (1963) Physiological factors in insect migration by flight. Nature, 198, 423–27.

    Article  Google Scholar 

  • Johnson, C.G. (1967) International dispersal of insects and insect-borne viruses. Netherlands Journal of Plant Pathology, 73(Suppl. 1), 21–43.

    Article  Google Scholar 

  • Johnson, C.G. (1969) The Migration and Dispersal of Insects by Flight, Methuen, London.

    Google Scholar 

  • Jones, R.E. (1977) Movement patterns and egg distribution in cabbage butterflies. Journal of Animal Ecology, 46, 195–212.

    Article  Google Scholar 

  • Jones, R.E., Gilbert, N., Guppy, M. and Nealis, V. (1980) Long-distance movement of Pieris rapae. Journal of Animal Ecology, 49, 629–42.

    Article  Google Scholar 

  • Jutsam, A.J. and Goldsworthy, G.J. (1976) Fuels for flight in Locusta. Journal of Insect Physiology, 22, 243–9.

    Article  Google Scholar 

  • Kareiva, P. (1982) Experimental and mathematical analyses of herbivore movement: quantifying the influence of plant spacing and quality on foraging discrimination. Ecological Monographs, 52, 261–82.

    Article  Google Scholar 

  • Kareiva, P. (1983a) Influence of vegetation texture on herbivore populations: resource concentration and herbivore movement, in Variable Plants and Herbivores in Natural and Managed Systems (eds R.F. Denno and M.S. McClure), Academic Press, New York, pp. 259–89.

    Google Scholar 

  • Kareiva, P.M. (1983b) Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments. Oecologia, 57, 322–7.

    Article  Google Scholar 

  • Kareiva, P. (1985) Finding and losing host plants by Phyllotreta: patch size and surrounding habitat. Ecology, 66, 1809–16.

    Article  Google Scholar 

  • Kareiva, P. (1987) Habitat fragmentation and the stability of predator-prey interactions. Nature, 326, 388–90.

    Article  Google Scholar 

  • Kennedy, J.S. (1956) Phase transformation in locust biology. Biological Review, 31, 349–70.

    Google Scholar 

  • Kennedy, J.S. (1961) A turning point in the study of insect migration. Nature, 189, 785–91.

    Article  Google Scholar 

  • Kennedy, J.S. (1975) Insect dispersal, in Insects, Science, and Society (ed. D. Pimentel), Academic Press, New York, pp. 103–19.

    Google Scholar 

  • Kisimoto, R. (1956) Factors determining the wing-form of adult, with special reference to the effect of crowding during the larval period of the brown planthopper, Nilaparvata lugens Stal. Studies on the polymorphism in the planthoppers (Homoptera, Araeopidae). I. Oyo-Kontyu, 12, 105–11.

    Google Scholar 

  • Kisimoto, R. (1976) Synoptic weather conditions inducing long distance immigration of planthoppers Sogatella furcifera Horvath and Nilaparvata lugens Stal. Ecology and Entomology, 1, 95–109.

    Article  Google Scholar 

  • Lamb, R.J. and MacKay, P.A. (1979) Variability in migratory tendency within and among natural populations of the pea aphid, Acyrthosiphon pisum. Oecologia, 39, 289–99.

    Article  Google Scholar 

  • Lamb, R.J. and MacKay, P.A. (1983) Micro-evolution of the migratory tendency, photoperiodic response and developmental threshold of the pea aphid, Acrytho-siphon pisum, in Diapause and Life Cycle Strategies in Insects (eds V.K. Brown and I. Hodek), Junk, The Hague, pp. 209–17.

    Google Scholar 

  • Lande, R. (1982) A quantitative genetic theory of life history evolution. Ecology, 63, 607–15.

    Article  Google Scholar 

  • Lavie, B. and Ritte, U. (1978) The relation between dispersal behavior and reproductive fitness in the flour beetle Tribolium castaneum. Canadian Journal of Genetic Cytology, 20, 589–95.

    Google Scholar 

  • Lawrence, W.S. (1987) Effects of sex ratio on milkweed beetle emigration from host plant patches. Ecology, 68, 539–46.

    Article  Google Scholar 

  • Lees, A.D. (1966) The control of polymorphism in aphids. Advances in Insect Physiology, 3, 207–77.

    Article  CAS  Google Scholar 

  • Lees, A.D. (1967) The production of the apterous and alate forms in the aphid, Megoura viciae Buckton, with special reference to the role of crowding. Journal of Insect Physiology, 13, 289–318.

    Article  Google Scholar 

  • Lewontin, R.C. (1965) Selection for colonizing ability, in The Genetics of Colonizing Species (eds H.G. Baker and G.L. Stebbins), Academic Press, New York, pp. 77–94.

    Google Scholar 

  • Lidicker, W.Z. Jr and Caldwell, R.L. (1982) Dispersal and Migration. Benchmark Papers in Ecology, Vol. 11, Hutchinson Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • MacArthur, R.H. and Wilson, E.O. (1967) The Theory of Island Biogeography, University of Princeton Press, Princeton, New Jersey.

    Google Scholar 

  • Mahmud, F.S. (1980) Alary polymorphism in the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae) Entomological Experimental Applications, 28, 47–53.

    Article  Google Scholar 

  • Mason, C.J. and McManus, M.L. (1981) Larval dispersal of the gypsy moth, in The Gypsy Moth: research toward integrated pest management (eds C.C. Doane and M.L. McManus), Forest Service Science and Education Agency, Tech. Bull. 1584, Washington, DC.

    Google Scholar 

  • May, R.M. and Anderson, R.M. (1983) Parasite-host coevolution, in Coevolution (eds D. Futuyma and M. Slatkin), Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • McCauley, D.E. (1983) Gene flow distances in natural populations of Tetraopes tetraopthalmus. Evolution, 37, 1239–46.

    Article  Google Scholar 

  • McCauley, D.E., Ott, J.R., Stine, S. and McGrath, S. (1981) Limited dispersal as one determinant of population structure in the milkweed beetle (Tetraopes tetraophthalmus). Oecologia, 51, 145–50.

    Article  Google Scholar 

  • McCullough, D.R. (1985) Long range movements of large terrestrial mammals, in Migration: mechanisms and adaptive significance (ed. M.A. Rankin), Contributions in Marine Science, Suppl. 27, pp. 444–65.

    Google Scholar 

  • Messina, F.J. (1987) Genetic contribution to the dispersal polymorphism of the cowpea weevil (Coleoptera: Bruchidae). Annals of the Entomology Society of America, 80, 12–6.

    Google Scholar 

  • Mochida, O. (1973) The characters of the two wing-forms of Javesella pellucida (F.) (Homoptera: Delphacidae), with special reference to reproduction. Transactions of the Royal Entomology Society of London, 125, 177–225.

    Article  Google Scholar 

  • Norris, M.J. (1950) Reproduction in the African migratory locust (Locusta migratoria migratorioides R&F) in relation to density and phase. Anti-Locust Bulletin, 6, 1–50.

    Google Scholar 

  • Padgham, D.E. (1983) Flight fuels in the brown planthopper Nilaparvata lugens. Journal of Insect Physiology, 29, 95–9.

    Article  CAS  Google Scholar 

  • Palmer, J.O. (1985) Ecological genetics of wing length, flight propensity, and early fecundity in a migratory insect, in Migration: mechanisms and adaptive significance (ed. M.A. Rankin), Contributions in Marine Science, Suppl. 27, pp. 663–73.

    Google Scholar 

  • Rainey, R.C. (1951) Weather and the movement of locust swarms: a new hypothesis. Nature, 168, 1057–60.

    Article  Google Scholar 

  • Rankin, M.A. (1978) Hormonal control of insect migratory behavior, in Evolution of Insect Migration and Diapause (ed. H. Dingle), Springer-Verlag, New York, pp. 5–32.

    Chapter  Google Scholar 

  • Rankin, M.A. (1985a) Endocrine influences on insect migratory behavior, Migration: mechanisms and adaptive significance (ed. M.A. Rankin), Contributions in Marine Science, Suppl. 27, pp. 817–41.

    Google Scholar 

  • Rankin, M.A. (ed.) (1985b) Migration: mechanisms and adaptive significance, Contributions in Marine Science, Suppl. 27, 868 pp.

    Google Scholar 

  • Rausher, M.D. (1983) Ecology of host-selection behavior of phytophagous insects, in Variable Plants and Herbivores in Natural and Managed Systems (eds R.F. Denno and M.S. McClure), Academic Press, New York, pp. 223–57.

    Google Scholar 

  • Roderick, G.K. (1987) Ecology and evolution of dispersal of Californian populations of a salt marsh insect. Ph.D. Thesis, University of California, Berkeley.

    Google Scholar 

  • Roff, D.A. (1975) Population stability and the evolution of dispersal in a heterogeneous environment. Oecologia, 19, 217–37.

    Article  Google Scholar 

  • Roff, D.A. (1984) The cost of being able to fly: a study of wing polymorphism in two species of crickets. Oecologia, 63, 30–7.

    Article  Google Scholar 

  • Roff, D.A. (1986) The genetic basis and evolution of wing dimorphism in insects. Evolution, 40, 1009–20.

    Article  Google Scholar 

  • Roff, D.A. (1990) The evolution of flightlessness in insects. Ecological Monographs, 60, 389–421.

    Article  Google Scholar 

  • Roff, D.A. and Fairbairn, D.J. (1990) Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. American Zoologist, in press.

    Google Scholar 

  • Rose, M.R. and Charlesworth, B. (1981) Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics, 97, 187–96.

    PubMed  CAS  Google Scholar 

  • Safriel, U.N. and Ritte, U. (1980) Criteria for the identification of potential colonizers. Biological Journal of the Linnean Society, 13, 287–97

    Article  Google Scholar 

  • Safriel, U.N. and Ritte, U. (1983) Universal correlates of colonizing ability, in The Ecology of Animal Movement (eds I.R. Swingland and P.J. Greenwood), Clarendon Press, Oxford, pp. 215–39.

    Google Scholar 

  • Sakai, K., Narise, T. and Iyama, S. (1957) Migration studies in several wild strains of Drosophila melanogaster. National Institute of Genetics, Japan Annual Report No. 7, pp. 73–5.

    Google Scholar 

  • Service, P.M. and Rose, M.R. (1985) Genetic covariation among life-history components: the effect of novel environments. Evolution, 39, 943–5.

    Article  Google Scholar 

  • Solbreck, C. (1978) Migration, diapause, and direct development as alternative life histories in a seed bug, Neacoryphus bicrucis, in The Evolution of Insect Migration and Diapause (ed. H. Dingle), Springer-Verlag, New York, pp. 195–217.

    Chapter  Google Scholar 

  • Solbreck, C. (1980) Dispersal distances of migrating pine weevils, Hylobius abietis, Coleoptera: Curculionidae. Entomological Experimental Applications, 28, 123–31.

    Article  Google Scholar 

  • Southwood, T.R.E. (1962) Migration of terrestrial arthropods in relation to habitat. Biological Review, 37, 171–214.

    Article  Google Scholar 

  • Southwood, T.R.E. (1977) Habitat, the templet for ecological strategies? Journal of Animal Ecology, 46, 337–65.

    Article  Google Scholar 

  • Strong, D.R. and Stiling, P.D. (1983) Wing dimorphism changed by experimental density manipulation in a planthopper (Prokelisia marginata, Homoptera, Delphacidae). Ecology, 64, 206–9.

    Article  Google Scholar 

  • Sutherland, O.R.W. (1969) The role of crowding in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 15, 1385–410.

    Article  Google Scholar 

  • Sutherland, O.R.W. (1970) The role of host plant in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 15, 2179–201.

    Article  Google Scholar 

  • Swingland, L.R. and Greenwood, P.J. (1983) The Ecology of Animal Movement, Clarendon Press, Oxford, 311 pp.

    Google Scholar 

  • Tanaka, S. (1976) Wing polymorphism, egg production and adult longevity in Pteronemobious taprobanensis Walker (Orthoptera, Gryllidae). Kontyu, 44, 327–33.

    Google Scholar 

  • Tauber, C.A. and Tauber, M.J. (1981) Insect seasonal cycles: genetics and evolution. Annual Review of Ecology and Systematics, 12, 281–308.

    Article  Google Scholar 

  • Tauber, M.J. and Tauber, C.A. (1976) Insect seasonality: diapause maintenance, termination, and postdiapause development. Annual Review of Entomology, 21, 81–107.

    Article  Google Scholar 

  • Tauber, M.J., Tauber, C.A. and Masaki, S. (1986) Seasonal Adaptations of Insects, Oxford University Press, New York.

    Google Scholar 

  • Taylor, C.E., Powell, J.R., Kekic, V. et al. (1984) Dispersal rates of species of the Drosophila obscura group: implications for population structure. Evolution, 38, 1397–401.

    Article  Google Scholar 

  • Taylor, L.R. and Taylor, R.A.J. (1977) Aggregation, migration and population mechanics. Nature, 265, 415–21.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, L.R., Taylor, R.A.J., Woiwod, L.P. and Perry, J.N. (1983) Behavioral dynamics. Nature, 303, 801–4.

    Article  Google Scholar 

  • Turchin, P.B. (1986) Modelling the effect of host patch size on Mexican bean beetle emigration. Ecology, 67, 124–32.

    Article  Google Scholar 

  • Urquhart, F.A. (1960) The Monarch Butterfly, University of Toronto Press, Toronto.

    Google Scholar 

  • Utida, S. (1972). Density dependent polymorphism in the adult of Callosabruchus maculatus (Coleoptera: Bruchidae). Journal of Stored Products Research, 8, 111–26.

    Article  Google Scholar 

  • Uvarov, B.P. (1928) Grasshoppers and Locusts, Imperial Bureau of Entomology, London.

    Google Scholar 

  • Vepsäläinen, K. (1978) Wing dimorphism and diapause in Gerris: Determination and adaptive significance, in Evolution of Insect Migration and Diapause (ed. H. Dingle), Springer-Verlag, New York, pp. 218–53.

    Chapter  Google Scholar 

  • Via, S. (1984) The quantitative genetics of polyphagy in an insect herbivore. II. Genetic correlations in larval performance within and among host plants. Evolution, 38, 896–905.

    Article  Google Scholar 

  • Waloff, Z. (1966) The upsurges and recessions of the desert locust plague: a historical survey. Anti-Locust Memoirs, 8, 1–111.

    Google Scholar 

  • Wetzler, R.E. and Risch, S.J. (1984) Experimental studies of beetle diffusion in simple and complex crop habitats. Journal of Animal Ecology, 53, 1–19.

    Article  Google Scholar 

  • Williams, C.B. (1930) The Migration of Butterflies, Edinburgh.

    Google Scholar 

  • Wratten, S.D. (1977) Reproductive strategy of winged and wingless morphs of the aphids Sitobon avenae and Metopolophium dirhodum. Annals of Applied Biology, 85, 319–31.

    Article  PubMed  CAS  Google Scholar 

  • Wu, A.C. (1981) Life history traits correlated with emigration in flour beetle populations. Ph.D. Thesis, University of Illinois at Chicago Circle.

    Google Scholar 

  • Young, E.C. (1965) Flight muscle polymorphism in British Corixidae: Ecological observations. Journal of Animal Ecology, 34, 353–90.

    Article  Google Scholar 

  • Zera, A.J. (1984) Differences in survivorship, development rate, and fertility between the longwinged and wingless morphs of the waterstrider, Limnoporus canaliculars. Evolution, 38, 1023–32.

    Article  Google Scholar 

  • Zera, A.J. (1985) Wing polymorphism in waterstriders (Gerridae: Hemiptera): Mechanisms of morph determination and fitness differences between morphs, in Migration: mechanisms and adaptive significance (ed. M.A. Rankin), Contributions in Marine Science, Suppl. 27, pp. 674–703.

    Google Scholar 

  • Zera, A.J., Innes, D.J. and Saks, M.E. (1983) Genetic and environmental determinants of wing polymorphism in the waterstrider Limnoporus canaliculars. Evolution, 37, 513–22.

    Article  Google Scholar 

  • Ziegler, J.R. (1976) Evolution of the migration response: emigration by Tribolium and the influence of age. Evolution, 30, 579–92.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roderick, G.K., Caldwell, R.L. (1992). An entomological perspective on animal dispersal. In: Stenseth, N.C., Lidicker, W.Z. (eds) Animal Dispersal. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2338-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2338-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5033-3

  • Online ISBN: 978-94-011-2338-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics