Skip to main content

A simple conversion of tryptophan to a yohimbane derivative

  • Chapter
Amino Acids

Abstract

DL-Tryptophan in 0,1 N HCl reacts with ninnydrin (triketoindane hydrate) at room temperature to give a brown precipitate; washing the precipitate with cold methanol leaves a yellow compound which is crystallized from boiling methanol (C20H14O4N2, 1 CH3OH). X-ray diffractometry showed that the crystals belong to the monoclinic system, with P21/n as a spatial symmetry group; the unit cell (a = 12.016 Å; b = 13.336 Å; c = 12.128 Å; ß = 113.45°) contains four molecules, each one formed by the association of a molecule of methanol with 5-carboxy-14-hydroxy-,(3,14,15,16,17,18,19,20) octadehydro-yohimban-21-one, a hitherto not described compound possessing the same ring skeleton as yohimbine and reserpine, two major indole alkaloids. The structure of a spiro derivative of 2,3,4,5-tetrahydro-ß-carboline, previously proposed [16], can thus be eliminated.

The synthesis of the new yohimbane compound may be explained by the opening of the cyclopentane ring of ninhydrin, followed by the condensation of the resulting o-carboxyphenyl glyoxal with the indole amino acid or by a mechanism involving the transient formation of a spirane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marion L (1952) In: Manske RHF (ed.) The Alkaloids 2. Academic Press. New York, pp. 369–498.

    Google Scholar 

  2. Saxton JE (1960) In: Manske RHF (ed.) The Alkaloids 7. Academic Press, New York, pp. 1–199.

    Google Scholar 

  3. Cordell GA (1981) Introduction to Alkaloids, a Biogenetic Approach. Wiley-Interscience, New York, pp. 655–697.

    Google Scholar 

  4. Szantay C, Blasko G, Honty K and Dörnyei G (1986) In: Brossi A (ed.) The Alkaloids 27. Academic Press, New York, pp. 131–268.

    Google Scholar 

  5. Spiegel L (1896) Chem. Zeit 20: 970–971.

    Google Scholar 

  6. Thorns H (1897) Ber. Pharm. Ges. 7: 279–283.

    Google Scholar 

  7. Witkop B (1943) Ann. Chem. 554: 83–126.

    CAS  Google Scholar 

  8. Clemo GR and Swan GA (1946) J. Chem. Soc. 617–621.

    Google Scholar 

  9. Clemo GR and Swan GA (1949) J. Chem. Soc. 487–492.

    Google Scholar 

  10. Swan GA (1949) J. Chem. Soc. 1720–1724.

    Google Scholar 

  11. Swan GA (1950) J. Chem. Soc. 1534–1539.

    Google Scholar 

  12. Ninomiya I and Naito T (1983) In: Brossi A (ed.) The Alkaloids 22. Academic Press, New York, pp. 189–227.

    Google Scholar 

  13. Blasko G, Kerekes P and Makleit S (1987) In: Brossi A (ed.) The Alkaloids 31. Academic Press, New York, pp. 1–28.

    Google Scholar 

  14. Martin SF, Rüeger H, Williamson SA and Grzejszczak S (1987) J. Am. Chem. Soc. 109: 6124–6134.

    Article  CAS  Google Scholar 

  15. Hiemstra H and Speckamp WN (1988) In: Brossi A (ed.) The Alkaloids. Academic Press, New York, pp. 271–339.

    Google Scholar 

  16. Heesing JA, Muller-Mathesius R and Rose H (1970) Ann. Chem. 735: 72–76.

    CAS  Google Scholar 

  17. Tinguy-Moreaud E de, Cicirello S, Chanh NgB and Neuzil E (1989) Bull. Soc. Pharm. Bordeaux 128: 19–31.

    Google Scholar 

  18. Cicirello S, Tinguy-Moreaud E de and Neuzil E (1989) Bull. Soc. Pharm. Bordeaux 128: 32–39.

    CAS  Google Scholar 

  19. Gilmore CJ (1984) J. Appl. Cryst. 17: 42–46.

    Article  CAS  Google Scholar 

  20. Précigoux G, Courseille C, Chanh NgB, Leroy F, Tinguy-Moreaud E de and Neuzil E (1990) Acta Cryst., submitted for publication.

    Google Scholar 

  21. Ninomiya I, Naito T and Takasugi H (1976) J.C.S., Perkin I. 1865–1868.

    Google Scholar 

  22. Pandey GD and Tiwari KP (1980) Synth. Comm. 10: 523–527.

    Article  CAS  Google Scholar 

  23. Ninomiya I, Takasugi H and Naito T (1973) J.C.S., Chem. Comm. 732.

    Google Scholar 

  24. Atta-ur-Rahman and Waheed N (1979) Tetrahedron Letters 19: 1715–1710.

    Article  Google Scholar 

  25. Laguerre M, Boyer C and Atfani M (1988) Tetrahedron 44: 7109–7118.

    Article  CAS  Google Scholar 

  26. Kametani T, Higa T, Van Loc C, Ihara M and Fukumoto K (1977a) Chem. Pharm. Bull. (Japan) 25: 2735–2738.

    Google Scholar 

  27. Chattergee A and Mukhopadhyay S (1977) Indian J. Chem. 15B: 183–184.

    Google Scholar 

  28. Ashamina Y and Kashiwaki K (1915) J. Pharm. Soc. Japan (Yakugakuzasshi) 35: 1273–1292.

    Google Scholar 

  29. Kametani T, Van Loc C, Higa T, Koizumi M, Ihara M and Fukumoto K (1977b) J. Am. Chem. Soc. 99: 2306–2309.

    Google Scholar 

  30. Kametani T, Ohsawa T, Ihara M and Fukumoto K (1978) Chem. Pharm. Bull. (Japan) 26: 1922–1926.

    Google Scholar 

  31. Hotellier F, Delareau P and Pousset JL (1975) Phytochemistry 14: 1407–1409.

    Article  CAS  Google Scholar 

  32. Atta-ur-Rahman and Ghazala M (1982) Z. Naturforsch. 37B: 762–771.

    Google Scholar 

  33. Shafiee A and Rashidbalgi A (1977) J. Heterocycl. Chem. 14: 1317–1320.

    Article  CAS  Google Scholar 

  34. Au TY, Cheung HT and Sternhell S (1973) J.C.S., Perkin I. 13–16.

    Google Scholar 

  35. Lukats B and Clauder O (1972) Acta Chim. Acad. Sc. Hungar. 71: 93–100.

    CAS  Google Scholar 

  36. Bernatek E (1958) Tetrahedron 4: 213–222.

    Article  CAS  Google Scholar 

  37. Ruhemann S (1910) J. Chem. Soc. 2025–2031.

    Google Scholar 

  38. Merlini L, Mondelli R, Nasini G and Hesse M (1967) Tetrahedron 23: 3129–3145.

    Article  Google Scholar 

  39. Irie H, Fukudome J, Ohmori T and Tanaka J (1975) J.C.S. Chem. Comm. 63.

    Google Scholar 

  40. Kametani T, Hirai Y, Kajiwara M, Takabashi T and Fukumoto K (1975) Chem. Pharm. Bull. (Japan) 23: 2634–2642.

    CAS  Google Scholar 

  41. Shamma M and Nugent JF (1970) Tetrahedron Letters 30: 2625–2628.

    Google Scholar 

  42. Shamma M (1971) In: Manske RHF (ed.) The Alkaloids 13. Academic Press, New York, pp. 165–188.

    Google Scholar 

  43. Prota G and Ponsiglione E (1973) Tetrahedron 29: 4271–4274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 ESCOM Science Publishers B.V.

About this chapter

Cite this chapter

Neuzil, E., de Tinguy-Moreaud, E., Précigoux, G., Chanh, N.B., Courseille, C. (1990). A simple conversion of tryptophan to a yohimbane derivative. In: Lubec, G., Rosenthal, G.A. (eds) Amino Acids. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2262-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2262-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-72199-04-1

  • Online ISBN: 978-94-011-2262-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics