Skip to main content

Inhibitory effects of L-threo-3,4-dihydroxyphenylserine against maximal electroconvulsion and brain norepinephrine in mice

  • Chapter
Amino Acids

Abstract

L-threo-3,4-dihydroxyphenylserine (L-DOPS) is a synthetic amino acid, which is decarboxylated to form L-norepinephrine in vivo. The effects of L-DOPS on maximal electroshock seizure (MES) were investigated in mice here. All substances were injected intraperitoneally. L-DOPS (100–400 mg/kg) significantly decreased extension/flexion (E/F) ratios, though it could not abolish MES (tonic hind leg extension). However L-DOPS (400 mg/kg) significantly abolished MES, when combined with desipramine (5–20 mg/kg), maprotiline (20–40 mg/kg) or nialamide (30 mg/kg). Similar doses of desipramine, maprotiline, nialamide or L-DOPS could not inhibit MES when used alone.

In the combined treatment with desipramine (20 mg/kg), maprotiline (40 mg/kg) or nialamide (30 mg/kg), the ED50 (95% CL) of L-DOPS for abolition of MES was 160 (100–256), 95 (50–181) or 210 (145–305) mg/kg respectively. The determination of brain NE was made by HPLC. The significant increase of NE was observed in the treatment with L-DOPS, nialamide, or L-DOPS combined with either nialamide, desipramine or maprotiline. Desipramine mildly increased NE, but maprotiline did not alter NE. It was presumed that an anticonvulsant action of L-DOPS and L-DOPS with the combined drugs was due to the modification of brain nonadrenergic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Inagaki C and Tanaka C (1978) Biochem. Pharmacol. 27: 1081–1086.

    Article  PubMed  CAS  Google Scholar 

  2. Narabayashi H, Kondo T, Hayashi A, Suzuki T and Nagatsu T (1981) Proc. Japan Acad. 57: 351–354.

    Article  Google Scholar 

  3. Senda Y, Muto T, Matsuoka Y, Takahashi A and Sobue I (1987) Clin. Neurol. (Tokyo) 27: 300–304.

    CAS  Google Scholar 

  4. Kilian M and Frey HH (1973) Neuropharmacology 12: 681–729.

    Article  PubMed  CAS  Google Scholar 

  5. Mason ST and Corcoran ME (1978) Life Sci. 23: 167–172.

    Article  PubMed  CAS  Google Scholar 

  6. Mason ST and Corcoran ME (1979) Brain Res. 170: 497–507.

    Article  PubMed  CAS  Google Scholar 

  7. Cox B and Lomax P (1976) Pharmacol. Biochem. Behav. 4: 263–267.

    Article  CAS  Google Scholar 

  8. Swinyard EA, Brown WC and Goodman LS (1952) J. Pharmacol. Exp. Ther. 106: 319–330.

    PubMed  CAS  Google Scholar 

  9. Tedeshi DH, Swinyard EA and Goodman LS (1956) J. Pharmacol. Exp. Ther. 116: 107–113.

    Google Scholar 

  10. Litchfield JT and Wilcoxon F (1949) J. Pharmacol. Exp. Ther. 96: 99–113.

    CAS  Google Scholar 

  11. Carlsson A, Corrodi H, Fuxe K and Hökfelt T (1969) Eur. J. Pharmacol. 5: 357–366.

    Article  PubMed  CAS  Google Scholar 

  12. Carlsson A, Corrodi H, Fuxe K and Hökfelt T (1969) Eur. J. Pharmacol. 5: 367–373.

    Article  PubMed  CAS  Google Scholar 

  13. Fuxe K and Ungerstedt U (1968) Eur. J. Pharmacol. 4: 135–144.

    Article  PubMed  CAS  Google Scholar 

  14. Göthert M, Schlicker E and Köstermann F (1983) Naunyn-Schmiedeberg’s Arch. Pharmacol. 322: 121–128.

    Article  Google Scholar 

  15. Lidbrink P, Jonsson G and Fuxe K (1971) Neuropharmacology 10: 521–536.

    Article  PubMed  CAS  Google Scholar 

  16. Maitre L, Waldmeier PC, Baumann PA and Staehelin M (1974) Adv. Biochem. Psychopharmacol. 10: 297–304.

    PubMed  CAS  Google Scholar 

  17. Waldmeier PC, Baumann P, Greengrass PM and Maitre L (1976) Postgrad. Med. J. 52 (Suppl. 3): 33–39.

    PubMed  CAS  Google Scholar 

  18. Jobe PC, Picchioni AL and Chin L (1973) J. Pharmacol. Exp. Ther. 184: 1–10.

    PubMed  CAS  Google Scholar 

  19. Jobe PC, Stull RE and Geiger PF (1974) Neuropharmacology 13: 961–968.

    Article  PubMed  CAS  Google Scholar 

  20. Gross RA and Ferrendelli JA (1982) Neuropharmacology 21: 655–661.

    Article  PubMed  CAS  Google Scholar 

  21. Corcoran ME and Mason ST (1980) Brain Res. 190: 473–484.

    Article  PubMed  CAS  Google Scholar 

  22. Trottier S, Berger B, Chauvel P, Dedek J and Gay M (1981) Neuroscience 6: 1069–1080.

    Article  PubMed  CAS  Google Scholar 

  23. Mohr E and Corcoran ME (1981) Exp. Neurol. 72: 507–511.

    Article  PubMed  CAS  Google Scholar 

  24. Laird II, HE (1983) Epilepsia 24: 107.

    Google Scholar 

  25. Ko KH, Dailey JW and Jobe PC (1982) J. Pharmacol. Exp. Ther. 222: 662–669.

    PubMed  CAS  Google Scholar 

  26. Lamont ES (1965) Br. Med. J. 2: 483.

    Article  PubMed  CAS  Google Scholar 

  27. Kiloh LG, Davison K and Osselton JW (1961) Electroencephalogr. Clin. Neurophysiol. 13: 216–223.

    Article  PubMed  CAS  Google Scholar 

  28. Trimble M (1978) Epilepsia 19: 241–250.

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz L and Swaminathan S (1982) Am. J. Psychiatry 139: 244–245.

    PubMed  CAS  Google Scholar 

  30. Holliday W, Brasfield Jr. KH and Powers B (1982) Am. J. Psychiatry 139: 673–674.

    PubMed  CAS  Google Scholar 

  31. Fromm GK, Amores CY and Thies W (1972) Arch. Neurol. 27: 198–204.

    PubMed  CAS  Google Scholar 

  32. Fromm GH, Wessel HB, Glass JD, Alvin JD and Van Horn G (1978) Neurology 28: 953–957.

    PubMed  CAS  Google Scholar 

  33. Pineda MR and Russell SC (1974) Dis. Nero. Syst. 35: 322–323.

    CAS  Google Scholar 

  34. Lange SC, Julieu RM and Fowler GW (1976) Epilepsia 17: 183–196.

    Article  PubMed  CAS  Google Scholar 

  35. Wood TW, Jobe PC, Laird HE and Dailey JW (1983) Fedn. Proc. 42: 363.

    Google Scholar 

  36. Clifford DB, Rutherford JL, Hicks FG and Zorumski CF (1985) Ann. Neurol. 18: 692–697.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 ESCOM Science Publishers B.V.

About this chapter

Cite this chapter

Yoshida, M., Yoshizawa, K., Nakanishi, T. (1990). Inhibitory effects of L-threo-3,4-dihydroxyphenylserine against maximal electroconvulsion and brain norepinephrine in mice. In: Lubec, G., Rosenthal, G.A. (eds) Amino Acids. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2262-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2262-7_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-72199-04-1

  • Online ISBN: 978-94-011-2262-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics