Skip to main content

Simulation of Hydrogen Separation from Hydrogen Sulfide Decomposition Gases Using Inorganic Membranes

  • Chapter
  • 303 Accesses

Abstract

One dimensional isothermal models were used to simulate the thermal decomposition of hydrogen sulfide in palladium and ceramic membrane reactors. The operational characteristics of the reactors were investigated in terms of dimensionless numbers relating the physical parameters of the membranes, the dimensions of the reactor, the reaction parameters and the operating variables. The results obtained suggest that conversions as high as 50% can be achieved with the palladium membrane reactor at high sweep gas flow rates, compared to an equilibrium conversion of 8.84%. Ceramic membranes on the other hand were found to lead to limiting values of conversion because of poor selectivity of permeation.

Author to whom correspondence should be sent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Shamma, L.M. and Naman, S.A. (1990). The Production and Separation of Hydrogen and Sulfur from Thermal Decomposition of Hydrogen Sulfide over Vanadium Oxide/Sulfide Catalysts. Int. J. Hydrogen. 15, 1, 1–5.

    Article  CAS  Google Scholar 

  • Bandermann, F. and Harder, K.B. (1982). Production of H2 via Thermal Decomposition of H2S and Separation of H2 and H2S by Pressure Swing Adsorption. Int. J. Hydrogen. 7, 6, 471–475

    Article  CAS  Google Scholar 

  • Bowman, C.W. and Du Plessis, M.P. (1986). The Canadian Synthetic Fuel Industry - A Major User of Hydrogen. Int. J. Hydrogen. 11, 1, 43–59.

    Article  Google Scholar 

  • Champagnie, A.M., Tsotsis, T.T., Minet, R.G. and Wagner, E. (1992). The Study of Ethane Dehydrogenation in a Catalytic Membrane Reactor. J. Catal. 134, 713.

    Article  CAS  Google Scholar 

  • Chivers, T. and Lau, C. (1987). The Thermal Decomposition of Hydrogen sulfide Over Vanadium and Molybdenum Sulfides and Mixed Sulfide Catalysts in Quartz and Thermal Diffusion Column Reactors. Int. J. Hydrogen. 12, 4 235–243.

    Article  CAS  Google Scholar 

  • Fletcher, E.A., Noring, J.E. and Murray, J.P. (1984). Hydrogen Sulfide as a Source of Hydrogen. Int. J. of Hydrogen Energy. 9, 7, 587–593.

    Article  CAS  Google Scholar 

  • Fukuda, K., Dokiya, M., Kameyama, T. and Kotera, Y. (1978). Catalytic Decomposition of Hydrogen Sulfide. Ind. Eng. Chem. Fundam. 17, 4, 243–248.

    Article  CAS  Google Scholar 

  • Govind, R. and Atnoor, D. (1991). Development of a Composite Palladium Membrane for Selective Hydrogen Separation at High Temperature. Ind. Eng. Chem. Res. 30, 591.

    Article  CAS  Google Scholar 

  • Gryaznov, V.M., Smirnov, V.S. and Slinko, M. (1976). Binary Palladium /Alloys as Selective Membrane Catalysts. In Proc. Sixth Int. Congr. on Catalysis. 2, 894–902.

    Google Scholar 

  • Gryaznov, V.M. (1986). Hydrogen Permeable Palladium Membrane Catalysts. Platinum Metals Rev. 30, 2, 68–72.

    CAS  Google Scholar 

  • Hsieh, H.P. (1991). Inorganic Membrane Reactors. Catal. Rev. Sci. Eng. 33, 1&2, 1–70.

    Article  CAS  Google Scholar 

  • Itoh, N., Shindo, Y., Hakuta, T. and Yoshitome, H. (1984). Enhanced Catalytic Decomposition of HI by using a Microporous Membrane. Int. J. Hydrogen Energy. 9, 10, 835–839.

    Article  Google Scholar 

  • Itoh, N.(1987). A Membrane Reactor Using Palladium. AIChE J, 33, 9, 1576–1578.

    Article  CAS  Google Scholar 

  • Itoh, N., Shindo, Y., Haraya, K. and Hakuta, T. (1988). A Membrane Reactor Using Microporous Glass for Shifting Equilibrium of Cyclohexane Dehydrogenation. J. Chem. Eng. Japan. 21, 4 399–404.

    Article  Google Scholar 

  • Itoh, N. and Govind, R. (1989). Development of Novel Oxidative Palladium Membrane Reactor. In Membrane Reactor Technology. eds. Govind, R. and Itoh, N. AIChE Symposium Series 268, 85, 10–17.

    Google Scholar 

  • Itoh, N., Shindo, Y. and Haraya, K. (1990). Ideal Flow Models for Palladium Membrane Reactors. J. Chem. Eng. Japan. 23, 4, 420–426.

    Article  CAS  Google Scholar 

  • Itoh, N., Xu, W. and Haraya, K. (1992). Basic Experimental Study on Palladium Membrane Reactors. J. Membrane Sci. 66, 149–155.

    Article  CAS  Google Scholar 

  • Kaloidas, V.E. and Papayannakos, N.G. (1987). Hydrogen Production from the Decomposition of Hydrogen Sulfide. Equilibrium Studies. Int. J. Hydrogen Energy. 12, 6, 403–409.

    Article  CAS  Google Scholar 

  • Kaloidas, V.E. and Papayannakos, N.G. (1989). Kinetics of Thermal Non Catalytic Decomposition of Hydrogen Sulfide. Chem. Eng. Sci. 44, 11, 2493–2500.

    Article  CAS  Google Scholar 

  • Kameyama, T., Dokiya, M., Fujishige, M., Yokokawa, H. and Fukuda, K. (1981). Possibility for Effective Production of Hydrogen from Hydrogen Sulfide by Means of a Porous Vycor Glass Membrane. Ind. Eng. Chem. Fund. 20, 1, 97–99.

    Article  CAS  Google Scholar 

  • Kameyama, T., Dokiya, M., Fujishige, M., Yokokawa, H. and Fukuda, K. (1983). Production of Hydrogen from Hydrogen Sulfide by Means of Selective Diffusion Membrane. Int. J. Hydrogen Energy. 8, 1, 5–13.

    Article  CAS  Google Scholar 

  • Kappauf, T., Murray, J.P., Palumbo, R., Diver, R.B. and Fletcher, E.A. (1985). Hydrogen and Sulfur from Hydrogen Sulfide. Energy. 10, 10, 1119–1137.

    Article  CAS  Google Scholar 

  • Kiuchi, H., Nakamura, T., Funaki, K. and Tanaka, T. (1982). Recovery of Hydrogen from Hydrogen Sulfide with Metal or Metal Sulfides. Int. J. Hydrogen Energy. 7, 6, 477–482.

    Article  CAS  Google Scholar 

  • Kikuchi, E., Uemiya, S., Sato, N., Inoue, H., Ando, H. and Matsuda, T. (1989). Membrane Reactor Using Microporous Glass Supported Thin Film of Palladium. Chemistry Letters. 489–492.

    Book  Google Scholar 

  • Lin, Y.S. and Burggraaf, A.J. (1992). CVD of Solid Oxides in Porous Substrates for Ceramic Membrane Modification. AIChE J. 38, 3, 445–454.

    Article  CAS  Google Scholar 

  • Lin, Y.S., de Vries, K.J., Brinkman, H.W. and Burggraaf, A.J. (1992). Oxygen Semipermeable Solid Oxide Membrane Composites Prepared by Electrochemical Vapor Deposition. J. Membrane Sci. 66, 211–226.

    Article  CAS  Google Scholar 

  • Mohan, K. and Govind, R. (1988a). Studies on Membrane Reactor. Separation Sci. Technol. 23, 1715–1733.

    CAS  Google Scholar 

  • Mohan, K. and Govind, R. (1988b). Analysis of Equilibrium Shift in Isothermal Reactors with a Perselective Wall, AIChE J, 34, 9, 1493–1503.

    Article  CAS  Google Scholar 

  • Nagamoto, H. and Inoue, H. (1979). Permeation Rate of Hydrogen through Palladium Membrane and Hydrogenation Rate of Ethylene by Permeate Hydrogen. J. Chem. Soc. Japan. 12, 327–332.

    Google Scholar 

  • Nagamoto, H. and Inoue, H. (1981). Analysis of Mechanism of Ethylene Hydrogenation by Hydrogen Permeating Palladium Membrane. J. Chem. Eng. Japan 14 5, 377–382.

    Article  CAS  Google Scholar 

  • Nagamoto, H. and Inoue, H. (1985). A Reactor with Catalytic Membrane Permeated by Hydrogen. Chem. Eng. Commun. 34, 315–323.

    Article  CAS  Google Scholar 

  • Okubu, T., Haruta, K., Kusakabe, K., Morooka, S., Anzai, H. and Akiyama, S. (1991). Equilibrium Shift of Dehydrogenation at Short Space-Time with Hollow Fiber Ceramic Membrane. Ind. Eng. Chem. Res. 30, 614–616.

    Article  Google Scholar 

  • Raymont, M.E.D. (1975). Make Hydrogen from Hydrogen Sulfide. Hydrocarbon Proc. 54, 7, 139–142.

    CAS  Google Scholar 

  • Schmitz, J., Lucke, L., Herzog, F. and Glaubitz, D. (1988). Permeation Membranes for the Production of Hydrogen at High Temperatures. In Hydrogen Energy Progress vii, Int. Assoc. Hydrogen Energy, vol. 2, 819–830.

    Google Scholar 

  • Shindo, Y., Hakuta, T., Yoshitome, H. and Inoue, H. (1983a). Gas Diffusion in Microporous Media in Knudsen Regime. J. Chem. Eng, Japan. 16, 2, 120–126.

    CAS  Google Scholar 

  • Shindo, Y., Hakuta, T., Yoshitome, H. and Inoue, H. (1983b). A Dimensionless Equation for Gas Diffusion in Microporous Media in Knudsen Regime, J. Chem. Eng. Japan. 16, 6, 521–523.

    Article  CAS  Google Scholar 

  • Tsapatsis, M., Kim, S., Nam, S.W. and Gavalas, G. (1991). Synthesis of Hydrogen Permselective SiO2, TiO2,AI2O3 and B2O3 Membranes from the Chloride Precursor. Ind. Eng. Chem. Res. 30, 2152–2159.

    Article  CAS  Google Scholar 

  • Zaspalis, V.T., Van Praag, W., Keizer, K., Von Ommen, J.G. and Burggraaf, A.J. (1991). Reactions of Methanol over Catalytically Active Alumina Membrane. J. App. Catal. 74, 205–222.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zaman, J., Chakma, A. (1993). Simulation of Hydrogen Separation from Hydrogen Sulfide Decomposition Gases Using Inorganic Membranes. In: Clift, R., Seville, J.P.K. (eds) Gas Cleaning at High Temperatures. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2172-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2172-9_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4961-0

  • Online ISBN: 978-94-011-2172-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics