Molecular crystals

  • R. T. Bailey
  • F. R. Cruickshank
  • P. J. Halfpenny
  • D. Pugh
  • J. N. Sherwood
  • G. S. Simpson


The special feature of molecular crystals that distinguishes them from ionic materials or semiconductors is that the constituent molecules retain most of their identity. A knowledge of the molecular properties, combined with crystallographic data specifying the orientation of the molecules in the crystal lattice, should therefore provide a basis for understanding the optical properties of the crystal. Molecular quantum theory, confirmed by measurements on well-separated molecules in vapours or dilute solution, provides a reasonably accurate guide to the strength of the molecular nonlinearities, and many molecules have now been synthesized specifically for the purpose of investigating their potentially powerful nonlinear properties. The prediction of crystal structure, which would also be necessary if materials for nonlinear optics applications were to be designed completely from theory, is not at present possible, although certain general guiding principles are useful in creating molecular structures that are likely to crystallize in the non-centrosymmetric forms required for second-order materials (Zyss and Chemla, 1987).


Nonlinear Optical Property Molecular Crystal Organic Crystal Nonlinear Optical Material Zone Refining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amelinckx, S. (1969) The study of crystal imperfections by optical methods, Solid State Phys. 6 (Supplement), 1–55.Google Scholar
  2. Andreazza, P., Lefraucheux, F., Robert, M. C., Josse, D. and Zyss, J. (1990) Gel growth of 3-methyl-4-nitropyridine-1-oxide organic crystals: X-ray and non-linear optics characterization, J. Appl. Phys. 8, 8-13.CrossRefGoogle Scholar
  3. Babai, F. H. and White, E. A. D. (1980) The growth of void-free crystal cored fibres of organic materials, J. Crystal Growth 49 245–252.CrossRefGoogle Scholar
  4. Babai, F. H., Dyott, R. B. and White, E. A. D. (1977) Crystal growth of organic materials in glass capillaries, J. Mater. Sci. 12 869–872.CrossRefGoogle Scholar
  5. Bailey, R. T., Cruickshank, F. R., Pugh, D. and McLeod, A. (1982) Quantitative measurement of energy deposited in optical coatings, Proceedings Max Born Commemorative Symposium, SPIE, 369 88–89.CrossRefGoogle Scholar
  6. Bailey, R. T., Blaney, S., Cruickshank, F. R., Guthrie, S. M. G., Pugh, D. and Sherwood, J. N. (1988a) A new method of assessing the efficiency of second harmonic generation in small samples of organic crystals, Appl. Phys. B47 83–86.Google Scholar
  7. Bailey, R. T., Cruickshank, F. R., Guthrie, S. M. G., McArdle, B. J., McGillivray, G. W., Morrison, H., Pugh, D., Shepherd, E. E. A., Sherwood, J. N. and Yoon, C. S. (1988b) A full optical characterization of the organic non-linear optical material MBA-NPProceedings SPIE, San Diego, August 1988, no. 971 pp. 76–82.CrossRefGoogle Scholar
  8. Bailey, R. T., Cruickshank, F. R., Guthrie, S. M. G., McArdle, B., McGillivray, G. W., Pugh, D., Shepherd, E. E. A., Sherwood, J. N., Simpson, G. S. and Yoon, C. S. (1989a) The purification, growth and optical properties of the organic material DAN, Proceedings SPIE Nonlinear Optical Materials, Hamburg, September 1988 no. 1017, pp. 212–216.CrossRefGoogle Scholar
  9. Bailey, R. T., Cruickshank, F. R., Guthrie, S. M. G., McArdle, B., Morrison, H., Pugh, D., Shepherd, E. E. A., Sherwood, J. N. and Yoon, C. S. (1989b) Second order optical non-linearity and phase matching in 4-nitro-4-methylbenzylidene aniline, (NMBA), Mol. Cryst. Liquid Cryst. 166 267–272.Google Scholar
  10. Bailey, R. T., Cruickshank, F. R., Pugh, D. and Sherwood, J. N. (1991a) Growth, perfection and properties of organic non-linear materials, Acta Cryst. A47, 145–155.Google Scholar
  11. Bailey, R. T., Bourhill, G. H., Cruickshank, F. R., Pugh, D., Sherwood, J. N., Simpson, G. S. and Varma, K. B. R. (1991b) Linear electro-optic properties of NMBA single crystals, Proceedings SPIE Emerging Optoelectronics Technologies, Bangalore, December 1991, in press.Google Scholar
  12. Bailey, R. T., Cruickshank, F. R., Pavlides, P., Pugh, D. and Sherwood, J. N. (1991c) Organic materials for non-linear optics: Inter-relationships between molecular properties, crystal structure and optical properties, J. Phys. D Appl. Phys. 24 135–145.CrossRefGoogle Scholar
  13. Bailey, R. T., Bourhill, G. H., Cruickshank, F. R., Pugh, D., Sherwood, J. N., Simpson, G. S. and Varma, K. B. R. (1992) Linear electro-optic effect and temperature coefficient of birefringence in NMBA single crystals, J. Appl. Phys. 71, in press.Google Scholar
  14. Ballentyne, D. W. G. and Al-Shukri, S. M. (1984) The growth of single crystals of electro-optic organic compounds in monomode optical fibres, J. Crystal Growth 68 651–655.CrossRefGoogle Scholar
  15. Baumert, J.-C., Twieg, R. J., Bjorklund, G. C., Logan, J. A. and Dirk, C. W. (1987) Crystal growth and characterisation of DAN, a new organic material for non-linear optics, Appl. Phys. Lett. 51 1484–1486.CrossRefGoogle Scholar
  16. Bennema, P. and Gilmer, G. H. (1973) Kinetics of crystal growth, in: Crystal Growth: An Introduction, ed. Hartman, P., North-Holland, Amsterdam, pp.263–327.Google Scholar
  17. Bleay, J. C., Hooper, R. M., Narang, R. S. and Sherwood, J. N. (1978) The growth of single crystals of some organic compounds by the Czochralski technique and the assessment of their perfection, J. Crystal Growth 43 589–596.CrossRefGoogle Scholar
  18. Bloembergen, N. and Shen, Y. R. (1964) Quantum-theoretical comparison of non-linear susceptibilities in parametric media, lasers and Raman lasers, Phys. Rev. A 133 37–49.CrossRefGoogle Scholar
  19. Buckley, H. E. (1951) Crystal Growth, Wiley, New York.Google Scholar
  20. Carenco, A., Jerphagnon, J. and Perigaud, A. (1977) Non-linear optical properties of some m-substituted benzene derivatives, J. Chem. Phys. 66 3806–3813.CrossRefGoogle Scholar
  21. Chemla, D. S., Oudar, J. L. and Jerphagnon, J. (1975) Origin of the second-order susceptibilities of crystalline substituted benzene, Phys. Rev. B12 4534–4546.Google Scholar
  22. Cheng, L. T. (1991) Empirical systematics of molecular quadratic optical polarizability, in: Organic Molecules for Nonlinear Optics and Photonics, NATO ASI Series, no. 194, eds. Messier, J., Kajzar, F. and Prasad, P. N., Kluwer Academic, Dordrecht, pp. 121–136.CrossRefGoogle Scholar
  23. Davey, R. J. (1980) Solvent effects in crystallisation processes, in: Current Topics in Materials Science, vol. 8, ed. Kaldis, E., North-Holland, Amsterdam, Chapter 6, pp. 329–479.Google Scholar
  24. Davydov, B. L., Derkacheva, L. D., Dunina, V. V., Zhabotinskii, M. E., Zolin, V. F., Koreneva, L. G. and Samokhina, M. A. (1970) Correlation of charge transfer to laser second harmonics generation, JETP Lett. (English translation), 12 16; (1971) Opt. Spectrosc. 30 274–276.Google Scholar
  25. Forno, C. (1974) The growth of large crystals of hexamine from solution, J. Crystal Growth 21 61–64.CrossRefGoogle Scholar
  26. Halbout, J. M. and Tang, C. L. (1987) Properties and applications of urea, in: Non-Linear Optical Properties of Organic Molecules and Crystals, vol. 1, eds. Zyss, J. and Chemla, D. S., Academic Press, New York, pp. 385–404.CrossRefGoogle Scholar
  27. Halfpenny, P. J. and Sherwood, J. N. (1990) Synchrotron radiation section topography of large uncut crystals of organic, non-linear optical materials, Phil. Mag. Lett. 62 1-7.CrossRefGoogle Scholar
  28. Herington, E. F. G. (1963), Zone Melting of Organic Materials,Blackwell, Oxford.Google Scholar
  29. Hobden, M. V. (1967) Phase matched second harmonic generation in biaxial crystals, J. Appl. Phys. 38 4365–4372.CrossRefGoogle Scholar
  30. Hooper, R. M., Narang, R. S., McArdle, B. J. and Sherwood, J. N. (1980) Crystallisation from solution at low temperatures, in: Crystal Growth, 2nd edn, ed. Pamplin, B. Pergamon, Oxford, pp. 395–420.Google Scholar
  31. Huang, G.-F., Hwang, M.-Y., Chong, S. W. and Lin, J. T. (1991) Characteristics of a non-linear organic crystal of 4-(N,N-dimethylamino)-3-acetamidonitrobenzene (DAN), Opt. Commun. 82 (5,6), 539–543.CrossRefGoogle Scholar
  32. Jackson, K. A. (1958) Mechanisms of growth, in: Liquid Metals and Solidification, Am. Soc. Metals, pp. 174–191.Google Scholar
  33. Jerphagnon, J. and Kurtz, S. K. (1970) Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals, J. Appl. Phys. 41 1667–1681.CrossRefGoogle Scholar
  34. Karl, N. (1974) Organic semiconductors, Adv. Solid State Phys. 14 261–287.CrossRefGoogle Scholar
  35. Kerkoc, P. Zgonik, M., Sutter, K., Bosshard, Ch. and Günter, P. (1989) Optical and non-linear optical properties of 4-(N,N-dimethylamino)-3-acetamidonitrobenzene single crystals, in: Materials for Nonlinear and Molecular Optics,Inst. Phys. Conf. Ser. vol. 107, ed. Lyons, L. J., Institute of Physics, Bristol, pp. 133–138.Google Scholar
  36. Kerkoc, P. Bosshard, Ch., Arend, H. and Günter, P. (1989) Growth and characterisation of 4-(N,N-dimethylamino)-3-acetamidonitrobenzene single crystal cored fibres, Appl. Phys. Lett. 54(6) 487–489.CrossRefGoogle Scholar
  37. Klapper, H. and Scheffen-Lauenroth, T. (1981) Growth and perfection of organic crystals from under cooled melt. I. Benzil, J. Crystal Growth, 55 557–570.CrossRefGoogle Scholar
  38. Kolinsky, P. V., Bailey, R. T., Cruickshank, R. R. Pugh, D. and Sherwood, J. N. (1992) to be published.Google Scholar
  39. Kondo, T., Morito, R., Ogasawara, N., Umegaki, S. and Ito, R. (1988) Linear and non-linear properties of MBA-NP, Proceedings SPIE, San Diego, August 1988, no. 971 pp. 83–88.CrossRefGoogle Scholar
  40. Kondo, T., Morito, R. Ogasawara, N., Umegaki, S. and Ito, R. (1989) A non-linear optical organic crystal for waveguiding SHG devices: MBA-NP, Japan J. Appl. Phys. 281622–1628.CrossRefGoogle Scholar
  41. Kondo, T., Hashizume, N., Miyoshi, S., Morita, R., Ogasawara, N., Umegaki, S. and Ito, R. (1990) Frequency doubling of diode laser light in organic channel waveguides, Proceedings SPIE Nonlinear Optical Properties of Organic Materials III, no. 1337 pp. 53–59.CrossRefGoogle Scholar
  42. Kurtz, S. K. and Perry, T. T. (1968) Powder technique for the evaluation of non-linear optical materials, J. Appl. Phys. 39 3798–3813.CrossRefGoogle Scholar
  43. Lalama, S. J. and Garito, A. F. (1979) Origin of the non-linear second order optical susceptibilities of organic systems, Phys. Rev. A 20 1179–1194.CrossRefGoogle Scholar
  44. Lang, A. R. (1957) A method for the examination of crystal sections using penetrating characteristic X-radiation, Acta Metall. 5 358–364.CrossRefGoogle Scholar
  45. Lang, A. R. (1978) Recent applications of X-ray topography, in: Modern Diffraction and Imaging Techniques in Materials Science, ed. Amelinckx, S., North-Holland, Amsterdam, pp. 407–479.Google Scholar
  46. Ledoux, I., Josse, D., Vidakovic P. and Zyss, J. (1986) Highly efficient single crystalline organic thin films for quadratic non-linear optics, Opt. Eng. 25(2) 202–210.CrossRefGoogle Scholar
  47. Levine, B. F. and Bethea, C. G. (1976) Effects on hyperpolarizabilities of molecular interactions in associating liquid mixtures, J. Chem. Phys. 65 2429–2438.CrossRefGoogle Scholar
  48. Levine, B. F. and Bethea, C. G. (1977) Charge transfer complexes and hyperpolarizabilities, J. Chem. Phys. 66 1070–1074.CrossRefGoogle Scholar
  49. Levine, B. F., Bethea, C. G., Thurmond, C. D. Lynch, R. T. and Bernstein, J. L. (1979) An organic crystal with an exceptionally large optical second order coefficient: 2-methyl-4-nitroaniline, J. Appl. Phys. 50 2523–2527.CrossRefGoogle Scholar
  50. Lipscomb, G. F., Garito, A. F. and Narang, R. S. (1981) An exceptionally large linear electrooptic effect in the organic solid, MNA, J. Chem. Phys. 75 1509–1516.CrossRefGoogle Scholar
  51. Maker, P. D. Terhune, R. W., Nisenhoff, M. and Savage, C. M., (1962) Effects of dispersion and focusing on the production of optical harmonics, Phys. Rev. Lett. 8 21–22.CrossRefGoogle Scholar
  52. McArdle, B. J., Sherwood, J. N. and Damask, A. C. (1974) The growth and perfection of phenanthrene single crystals, J. Crystal Growth,22 193–200.CrossRefGoogle Scholar
  53. Nayar, B. K. (1983), Non-linear optical interactions in organic crystal cored fibres, in: Optical Properties of Organic and Polymeric Materials, ed. Williams, D. J., American Chemical Society Symposium Series No. 233, American Chemical Society, Washington, DC, pp. 153–166.Google Scholar
  54. Nicoud, J. F. and Twieg, R. J. (1987) Design and synthesis of organic molecular compounds for efficient SHG, in: Nonlinear Optical Properties of Organic Molecules and Crystals, ed. Zyss, J. and Chemla, D. S., Academic Press, Orlando, FL, pp. 227–229.CrossRefGoogle Scholar
  55. Norman, P. A., Bloor, D., Obhi, J. S., Karaulov, S. A., Hursthouse, M. B. Kolinsky, P. V., Jones, R. J. and Hall, S. R. (1987) Efficient second harmonic generation in single crystals of 2-(N,Ndimethylamino)-5-nitroacetanilide, J. Opt. Soc. Am. B4 1013–1016.Google Scholar
  56. Oudar, J. L. and Chemla, D. S. (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment, J. Chem. Phys. 66 2664–2668.CrossRefGoogle Scholar
  57. Oudar, J. L. and Le Person, H. (1975) Second order polarizabilities of some aromatic molecules, Opt. Commun. 15 258–262.CrossRefGoogle Scholar
  58. Pfann, W. G. (1966) Zone Melting, 2nd edn, Wiley, New York.Google Scholar
  59. Robinson, P. M. (1968) Work hardening of anthracene single crystals, Acta Metall. 16 545–551.CrossRefGoogle Scholar
  60. Rozgonyi, G. A., Petroff, P. M. and Read, M. H. (1975) Elimination of oxidation-induced stack-ing faults by preoxidation gettering of silicon wafers, J. Electrochem. Soc. 122 1725–1729.CrossRefGoogle Scholar
  61. Sangster, R. C. and Irvine, J. W. (1949) Purification and comparison of some organic phosphors for scintillation counters, Phys. Rev. 75 1460–1461.Google Scholar
  62. Sasaki, K., Kinoshita, T. and Karasawa, N. (1984) Second harmonic generation of 2-methyl-4nitroaniline (MNA) by Nd/YAG laser with a tapered, slab-type optical waveguide, Appl. Phys. Lett. 45 333–334.CrossRefGoogle Scholar
  63. Shah, J. S. (1980) Zone refining and its applications, in: Crystal Growth, 2nd edn, ed. Pamplin, B. R., Pergamon Press, Oxford, Chapter 8, pp. 301–323.Google Scholar
  64. Sherwood, J. N. (1988) The growth, perfection and properties of crystals of organic non-linear optical materials, in: Organic Materials for Non-linear Optics,ed. Bloor, D. and Hann, R. A., Royal Society of Chemistry, London, pp. 71–81.Google Scholar
  65. Singer, K. D. and Garito, A. F. (1981) Measurements of molecular second order optical suscepti-bilities using the induced second harmonic generation, J. Chem. Phys. 75 3572–3580.CrossRefGoogle Scholar
  66. Stevenson, J. L. and Dyott, R. B. (1974) Optical fibre waveguide with a single-crystal core, Electron. Lett. 10 (22), 449–450.CrossRefGoogle Scholar
  67. Tanner, B. K. (1976) X-ray Diffraction Topography, Pergamon, Oxford.Google Scholar
  68. Tanner, B. K. and Bowen, D. K. (1980) Characterisation of Crystal Growth Defects by X-ray Methods, Plenum, London.CrossRefGoogle Scholar
  69. Teng, C. C. and Garito, A. F. (1983a) Disperson of the non-linear second order susceptibility of an organic system: p-Nitroaniline, Phys. Rev. Lett. 50 350–352.CrossRefGoogle Scholar
  70. Teng, C. C. and Garito, A. F. (1983b), Phys. Rev. B 28 6766–6773.CrossRefGoogle Scholar
  71. Thomas, J. M. (1967) Lattice imperfections in organic solids, Trans. Farad. Soc. 631922–1928. Tien, P. K. (1971) Light waves in thin films and integrated optics, Appl. Opt. 10(11) 2395–2413.Google Scholar
  72. Tomaru, S. and Zembutsu, S. (1986) Organic crystal growth in capillaries, Preprints 2nd Soc. Poly. Sci. Japan Int. Polym. Conf. vol. 2 pp. 145–154.Google Scholar
  73. Tomaru, S., Kawachi, M. and Kobayashi, M. (1984) Organic crystal growth for optical channel waveguides, Opt. Commun. 50(3), 154–156.CrossRefGoogle Scholar
  74. Umegaki, S., Hiramatsu, A., Tsukikawa, Y. and Tanaka, S. (1986) Crystal growth of organic materials and optical second harmonic generation in optical fibre, Proceedings SPI E Molecular and Polymeric Optoelectonic Materials; Fundamentals and Applications, no. 682 pp. 187–190.Google Scholar
  75. Varker, C. J. and Ravi, K. V. (1974) Oxidation-induced stacking faults in silicon II electrical effects in P/N diodes, J. Appl. Phys. 45 272–287.CrossRefGoogle Scholar
  76. Vidakovic, P. V. (1986), Growth of non-linear organic waveguides, E-MRS (Advanced Materials for Telecommunication), 387–400.Google Scholar
  77. Vidakovic, P. V., Coquillay, M. and Salin, F. (1987), N-(4-Nitrophenyl)-N-methylamino-acetonitrile: A new organic material for efficient second harmonic generation in bulk and waveguide configurations, I. Growth, crystal structure and characterisation of organic single crystal-cored fibres, J. Opt. Soc. Am. B4(6), 998--1012.Google Scholar
  78. Zyss, J. and Chemla, D. S. (1987) Quadratic non-linear optical effects, in: Nonlinear Optical Properties of Organic Molecules and Crystals, vol. 1, eds. Zyss, J. and Chemla, D. S., Academic Press, Orlando, FL, pp. 23–192.CrossRefGoogle Scholar
  79. Zyss J., Chemla, D. S. and Nicoud, J. F. (1981) Demonstration of efficient non-linear optical crystals with vanishing molecular dipole moment: Second harmonic generation in 3-methyl4-nitropyridine-1-oxide, J. Chem. Phys. 74 4800–4811.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • R. T. Bailey
  • F. R. Cruickshank
  • P. J. Halfpenny
  • D. Pugh
  • J. N. Sherwood
  • G. S. Simpson

There are no affiliations available

Personalised recommendations