Novel nonlinear crystals

  • M. Ebrahimzadeh
  • A. I. Ferguson


The field of nonlinear optics, as we know it today, was born as a direct consequence of the invention of the laser in the early sixties. Nonlinear effects in electromagnetism had been observed as early as the late nineteenth century by Kerr, Röntgen, Kundt, and Pockels, and later by Raman in 1927 when he discovered spontaneous scattering of light into new wavelengths in passing through a transparent medium. However, it was not until 1961 that the first observation of coherent nonlinear optical effects was made by Franken et al. (1961), who demonstrated second-harmonic generation of light in the crystal of quartz. This discovery propelled the field of modern nonlinear optics and initiated intensive research in materials science and crystal technology. In a short period following this discovery, several other nonlinear optical phenomena including parametric amplification and frequency mixing were identified, and many important concepts such as phase-matching were quickly developed. During this period, much effort was also expended at the fundamental level on studies of crystal optics and the understanding of the most important aspects of nonlinear interactions of light with matter. With the rapid parallel progress in laser technology and the availability of higher-intensity laser sources in new spectral regions, an increasing number of nonlinear optical experiments became viable and many new nonlinear optical techniques were developed. Today, nonlinear optics is a vast area, and undoubtedly one of the most important areas, of physics, with a diverse range of applications in many other areas of science. The aim of this chapter is to provide an insight into this subject and review some of the most recent progress made in the development of new nonlinear optical materials and devices. The early part of the chapter is concerned with a brief discussion on the physical origin of some of the important nonlinear optical effects and techniques used for the exploitation of these effects, such as phase-matching. This section will also contain a review of crystal optics and a discussion of nonlinear susceptibilities. In the later part, we describe several important nonlinear materials that have recently been developed, discuss their use in frequency-conversion devices, and outline their potential for future nonlinear optical applications.


Optical Parametric Oscillator Nonlinear Coefficient Nonlinear Crystal Uniaxial Crystal Nonlinear Optical Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleksandrovskii, A. L., Akhmanov, S. A., D’yakov, V. A., Zheludev, N. I. and Pryalkin, V. I. (1985) Efficient nonlinear optical converters made of potassium titanyl phosphate crystals, Sou. J. Quantum Electron. 15, 885–886.CrossRefGoogle Scholar
  2. Anthon, D. W. and Crowder C. D. (1988) Wavelength dependent phase matching in KTP, Appl. Opt. 27. 2650–2652.CrossRefGoogle Scholar
  3. Armstrong, J. A., Bloembergen, N., Ducuing, J. and Pershan, P. S. (1962) Interactions between light waves in a nonlinear dielectric, Phvs. Rer. 127, 1918–1939.CrossRefGoogle Scholar
  4. Barnes, N. P. and Corcoran, V. J. (1976) Parametric generation processes: spectral bandwidth and acceptance angles, Appl. Opt. 15, 696–699.CrossRefGoogle Scholar
  5. Bass, M. and Fradin, D. W. (1973) Surface and hulk laser-damage statistics and the identification of intrinsic breakdown processes, IEEE J. Quantum Electron. 9, 890–896.CrossRefGoogle Scholar
  6. Baumert, J.-C. and Gunther, P. (1987) Noncritically phase-matched sum frequency generation and image up-conversion in KNb03 crystals, Appl. Phs. Lett. 50, 554–556.CrossRefGoogle Scholar
  7. Baumert, J.-C., Schellenberg, F. M.. Lenth, W., Risk, W. P. and Bjorklund, G. C. (1987) Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4, Appl. Phrs. Lett. 51, 2192–2194.CrossRefGoogle Scholar
  8. Belt, R. F., Gashurov, G. and Liu Y. S. (1985) KTP as harmonic generator for Nd:YAG lasers, Laser Focus 21(10)110.Google Scholar
  9. Betzler, K., Hesse H. and Loose, P. (1978) Optical second harmonic generation in organic crystals: urea and ammonium malate, J. Mol. Struct. 47 393–396.CrossRefGoogle Scholar
  10. Bierlein, J. D. and Vanherzeele, H. (1989) Potassium titanyl phosphate: properties and new applications, J. Opt. Soc. Am. B 6 622–633.CrossRefGoogle Scholar
  11. Bjorkholm, J. E. (1966) Optical SHG using a focused laser beam, Phys. Rey. 142 126–136.CrossRefGoogle Scholar
  12. Bloembergen, N. and Pershan, P. S. (1962) Light waves at the boundary of nonlinear media. Phys. Rev. 128, 606–622.CrossRefGoogle Scholar
  13. Bond, W. L. (1971) Measurement of refractive indices of several crystals, J. Appl. Phys. 36 1674–1677.CrossRefGoogle Scholar
  14. Born, M. and Wolf, E. (1959) Principles of Optics, Pergamon, Oxford.Google Scholar
  15. Borsutzky, A., Brunger R., Huang, Ch. and Wallenstein, R. (1991) Harmonic and sum-frequency generation of pulsed laser radiation in BBC). LBO, and KD*P, Appl. Phys. B 52, 55–62.CrossRefGoogle Scholar
  16. Bosenberg, W. R., Cheng, L. K. and Tang, C. L. (1989a) Ultraviolet optical parametric oscillation in ß-BaB2O4, Appl. Phys. Lett. 54. 13 15.Google Scholar
  17. Bosenberg, W. R., Pelouch, W. S.. and Tang, C. L. (1989b) High-efficiency and narrow-linewidth operation of a two-crystal ß-BaB2O4 optical parametric oscillator, Appl. Phys. Leu. 55. 1952–1954.CrossRefGoogle Scholar
  18. Bosenberg, W. R. and Tang, C. L. (1990) Type II phase-matching in a fl-barium borate optical parametric oscillator, Appl. Phys. Lett. 56, 1819–1821.CrossRefGoogle Scholar
  19. Boyd, G. D., Ashkin, A., Dziedzic, J. M. and Kleinman, D. A. (1965) SHG of light with double-refraction, Phys. Rer. 137. A1305–A1320.CrossRefGoogle Scholar
  20. Boyd, G. D. and Kleinman, D. A. (1968) Parametric interaction of focused Gaussian light beams, J. Appl. Phys. 39, 3597–3639.CrossRefGoogle Scholar
  21. Brixner, L. H. and Babcock, K. (1968) Mat. Res. Bull. 3, 817.CrossRefGoogle Scholar
  22. Bromley, L. J., Guy, A. and Hanna, D. C. (1988) Synchronously pumped optical parametric oscillation in beta barium borate, Opt. Commun. 67, 316–320.CrossRefGoogle Scholar
  23. Bromley, L. J., Guy, A. and Hanna D. C. (1989) Synchronously pumped optical parametric oscillation in KTP, Opt. Commun. 70, 350–354.CrossRefGoogle Scholar
  24. Bryan, D. A.. Gerson, R. and Tomaschke, H. E. (1984) Increased optical damage resistance in lithium niobate. Appl. Phys. Lett. 44, 847–849.CrossRefGoogle Scholar
  25. Burdulis, S., Grigonis, R.. Piskarkas, A., Sinkevicius, G., Sirutkaitis, V., Fix, A., Nolting, J. and Wallenstein, R. (1990) Visible optical parametric oscillation in synchronously pumped beta-barium borate. Opt. Commun. 74, 398–402.CrossRefGoogle Scholar
  26. Campillo, A. J. and Tang C. L. (1970) Spontaneous parametric scattering of light in LiIO3. Appl. Phys. Lett. 16, 242–244.CrossRefGoogle Scholar
  27. Cassidy, C., Halbout J. M., Donaldson, W. and Tang, C. L. (1979) Nonlinear optical properties of urea, Opt. Commun. 29, 243–246.CrossRefGoogle Scholar
  28. Catella, G. C., Bohn J. H. and Luken, J. R. (1988) Tunable high-power urea optical parametric oscillator, IEEE J. Quantum Electron. 24 1201 1213.Google Scholar
  29. Chemla, D. S. (1980) Non-linear optical properties of condensed matter, Rep. Prog. Phrs. 43. 1191–1262.Google Scholar
  30. Chen, C., Wu, B.. Jiang, A. and You, G. (1985) A new type ultraviolet SHG crystal ß-BaB2O4, Sci. Sinica (series B) 28. 235–243.Google Scholar
  31. Chen, C., Fan, Y. X., Eckardt, R. C. and Byer, R. L. (1986) Recent developments in barium borate. SPIE Proc. 681 12–19.CrossRefGoogle Scholar
  32. Chen, C., Wu, Y.. Jiang, A., Wu, B., You, G., Li, R. and Lin, S. (1989) New nonlinear-optical crystal: LiB305 J. Opt. Soc. Am. B 6 616 621.Google Scholar
  33. Cheng, L. K., Bosenberg W. R. and Tang, C. L. (1988) Broadly tunable optical parametric oscillation in ß-BaB2O4 Appl. Phys. Lett. 53 175–177.CrossRefGoogle Scholar
  34. Cui, Y., Dunn, M. H., Norri C. J., Sibbett, W., Sinclair, B. D., Tang, Y. and Terry J. A. C. (1992) All-solid-state optical parametric oscillator for the visible, Opt. Lett. 17, 646–648.CrossRefGoogle Scholar
  35. Donaldson, W. R. and Tang, C. L. (1984) Urea optical parametric oscillator, Appl. Phys. Lctt. 44 25--27.CrossRefGoogle Scholar
  36. Ebrahimzadeh, M. and Dunn, M. H. (1988) Optical parametric fluorescence and oscillation in urea using an excimer laser, Opt. Commun. 69, 161–165.CrossRefGoogle Scholar
  37. Ebrahimzadeh, M., Dunn, M. H. and Akerboom, F. (1989) Highly efficient visible urea optical parametric oscillator pumped by a XeCI excimer laser, Opt. Lett. 14, 560–562.CrossRefGoogle Scholar
  38. Ebrahimzadeh, M., Henderson A. J. and Dunn, M. H. (1990a) An excimer-pumped ß-BaB2O4 optical parametric oscillator tunable from 354 nm to 2.370μm, IEEE J. Quantum Electron. 26 1241–1252.CrossRefGoogle Scholar
  39. Ebrahimzadeh, M., Robertson, G., Dunn, M. H. and Henderson, A. J. (1990b) Excimer-pumped LiB3O5 optical parametric oscillators, in: Technical Digest, Conference on Lasers and ElectroOptics, Optical Society of America, Washington, DC, postdeadline paper CPDP26, pp. 659–660.Google Scholar
  40. Ebrahimzadeh, M., Robertson, G. and Dunn, M. H. (1991a) Efficient ultraviolet LiB3O5 optical parametric oscillator, Opt. Lett. 16 767–769.CrossRefGoogle Scholar
  41. Ebrahimzadeh, M., Hall, G. J. and Ferguson, A. I. (199lb) Picosecond infrared optical parametric generation in KTP using a diode-laser-pumped solid-state laser, Opt. Lett. 16 1744–1746.CrossRefGoogle Scholar
  42. Ebrahimzadeh, M., Malcolm, G. P. A. and Ferguson, A. I. (1992a) Continuous-wave mode-locked optical parametric oscillator synchronously pumped by a diode-laser-pumped solid-state laser, Opt. Lett. 17 183–185.CrossRefGoogle Scholar
  43. Ebrahimzadeh, M., Hall, G. J. and Ferguson, A. I. (1992b) Temperature-tuned non-critically phase-matched picosecond LiB3O5 optical parametric oscillator, Appl. Phys. Lett. 60 1421–1423.CrossRefGoogle Scholar
  44. Ebrahimzadeh, M., Hall, G. J. and Ferguson, A. I. (1992e) Singly-resonant, all-solid-state, mode-locked LiB3O5 optical parametric oscillator tunable from 652nm to 2.65μm, Opt. Lett. 17 652–654.CrossRefGoogle Scholar
  45. Eckardt, R. C., Masuda, H., Fan, Y. X. and Byer, R. L. (1990) Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNb03, and KTP measured by phase-matched second-harmonic generation, IEEE J. Quantum Electron. 26 922–933.CrossRefGoogle Scholar
  46. Edelstein, D. C., Wachman, E. S.. Cheng, L. K., Bosenberg, W. R. and Tang, C. L. (1988) Femtosecond ultraviolet pulse generation in ß-BaB204, Appl. Phys. Lett. 52 2211–2213.CrossRefGoogle Scholar
  47. Edelstein, D. C.. Wachman, E. S. and Tang, C. L. (1989) Broadly tunable high repetition rate femtosecond optical parametric oscillator, Appl. Phys. Lett. 54. 1728–1730.CrossRefGoogle Scholar
  48. Eimerl, D., Davis, L., Velsko, S.. Graham, E. K. and Zalkin, A. (1987) Optical, mechanical, and thermal properties of barium borate, J. Appl. Phys. 62 1968–1983.CrossRefGoogle Scholar
  49. Ellingson, R. J. and Tang, C. L. (1992) High-repetition-rate femtosecond pulse generation in the blue, Opt. Lett. 17 343–345.CrossRefGoogle Scholar
  50. Fan, T. Y., Huang, C. E.. Hu. B. Q., Eckardt, R. C., Byer, R. L. and Feigelson, R. S. (1987) Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4, Appl. Opt. 26 2390–2394.CrossRefGoogle Scholar
  51. Fan, Y. X., Eckardt, R. C., Byer, R. L., Nolting, J. and Wallenstein, R. (1988) Visible BaB2O4 optical parametric oscillator pumped at 355 nm by a single-axial-mode pulsed source,,4ppl. Phys. Lett. 53 2014–2016.Google Scholar
  52. Fan, Y. X., Eckardt, R. C., Byer, R. L., Chen C. and Jiang, A. D. (1989) Barium borate optical parametric oscillator, IEEE J. Quantum Electron. 25 1196–1199.CrossRefGoogle Scholar
  53. Francois, G. E. (1966) CW measurement of the optical nonlinearity of ammonium dihydrogen phosphate. Phys. Rer. 143 597–600.CrossRefGoogle Scholar
  54. Franken P. A.. Hill A. E., Peters C. W. and Weinreich, G. (1961) Generation of optical harmonics. Phys. Rec. Lett. 7. 118–119.CrossRefGoogle Scholar
  55. Franken, P. A. and Ward J. F. (1963) Optical harmonics and nonlinear phenomena, Rer. Mod. Phvs. 35 23–39.Google Scholar
  56. Garmash, V. M., Ermakov, G. A.. Pavlova, N. I. and Tarasov, A. V. (1986) Soc. Tech. Phvs. Lett. 12 505.Google Scholar
  57. Giordmaine, J. A. (1962) Mixing of light beams in crystals, Phys. Ree. Lett. 8 19–20.CrossRefGoogle Scholar
  58. Glab, W. L. and Hessler, J. P. (1987) Efficient generation of 200-nm light in ß-BaB304, Appl. Opt. 26 3181–3182.CrossRefGoogle Scholar
  59. Goldberg, L. and Chun M. K. (1989) Efficient generation at 421 nm by resonantly enhanced doubling of GaAlAs laser diode array emission, Appl. Phys. Lett. 55 218–220.CrossRefGoogle Scholar
  60. Gunther, P. (1980) Ferroelectrics 24 35.CrossRefGoogle Scholar
  61. Ealbout, J. M., Blit, S., Donaldson W. and Tang, C. L. (1979) Efficient phase-matched second-harmonic generation and sum-frequency mixing in urea, IEEE J. Quantum Electron. 15 1176–1180.CrossRefGoogle Scholar
  62. Hanson F. and Dick D. (1991) Blue parametric generation from temperature-tuned LiB3O5, Opt. Lett. 16 205–207.CrossRefGoogle Scholar
  63. Henderson, A. J.. Ebrahimzadeh, M. and Dunn, M. H. (1990) Characterisation of urea optical parametric oscillators pumped by excimer lasers, J. Opt. Soc. Am. B 7. 1402–1410.CrossRefGoogle Scholar
  64. Hey, J. D. (1982) Non-linear optics reviewed. Part 1, S. Afr. J. Phvs. 5 6–18.Google Scholar
  65. Hobden, M. V. (1967) Phase-matched second-harmonic generation in biaxial crystals, J. Appl. Phvs. 38, 4365–4372.CrossRefGoogle Scholar
  66. Huang, J. Y., Shen, Y R., Chen, C. and Wu, B. (1991) Noncritically phase-matched second-harmonic generation and optical parametric amplification in a lithium triborate crystal, Appl. Phvs. Lett. 58. 1579–1581.CrossRefGoogle Scholar
  67. Hubner, K. H. (1969) Notes.lahrh. Mineral. Monatsh. 335.Google Scholar
  68. Hulme, K. F. (1973) Nonlinear optical crystals and their applications, Rep. Prot’. Phvs. 36, 497–540.CrossRefGoogle Scholar
  69. Ihara, M., Yuge, M. and Krogh-Moe J. (1980) Yogyo Kovokai Shi 88 179.CrossRefGoogle Scholar
  70. Ito H., Naito, H. and Inaba H. (1975) Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals, J. Appl. Phvs. 46 3992–3998.CrossRefGoogle Scholar
  71. Kato, K. (1980) High-efficiency high-power UV generation at 2128 Å in urea, IEEE J. Quantum Electron. 16, 810–811.CrossRefGoogle Scholar
  72. Kato, K. (1982) High-efficienc high-power parametric oscillation in KNb03, IEEE J. Quantum Electron. 18, 451–452CrossRefGoogle Scholar
  73. Kato, K. (1986) Second-harmonic generation to 2048 Å in f1-BaB2O4, IEEE J. Quantum Electron. 22 1013–1014.CrossRefGoogle Scholar
  74. Kato, K. (1988) Second-harmonic and sum-frequency generation to 4950 and 4589 Å in KTP, IEEE J. Quantum Electron. 24 3–4.CrossRefGoogle Scholar
  75. Kato, K. (1990) Tunable UV generation to 0.2325 μm in LiB305, IEEE J. Quantum Electron. 26 1173–1175.CrossRefGoogle Scholar
  76. Kato, K. (1991) Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm, IEEE J. Quantum Electron. 27. 1137–1140.CrossRefGoogle Scholar
  77. Kleinman, D. A. (1962a) Nonlinear dielectric polarization in optical media, Phys. Rer. 126, 1977–1979.CrossRefGoogle Scholar
  78. Kleinman, D. A. (1962h) Theory of second harmonic generation of light, Phvs. Rer,128, 1761–1775.CrossRefGoogle Scholar
  79. Kleinman D. A., Ashkin A. and Boyd G. D. (1966) Second harmonic generation of light by focused laser beams, Plus. Rer. 145, 338--379.Google Scholar
  80. Komine H. (1988) Optical parametric oscillation in a beta-barium borate crystal pumped by an XeC1 excimer laser, Opt Lett. 13. 643–645.CrossRefGoogle Scholar
  81. Kozlovsky, W. J.. Gustafson F. K., Eckardt, R. C. and Byer, R. L. (1988) Efficient monolithic MgO:LiNb03 singly resonant optical parametric oscillator, Opt. Lett. 13. 1102–1104.CrossRefGoogle Scholar
  82. Laenen, R., Graener H. and Laubereau A. (1990) Broadly tunable femtosecond pulses generated by optical parametric oscillation, Opt. Lett. 15 971–973.CrossRefGoogle Scholar
  83. Levine, E. M. and McMurdie H. F. (1949).1. Amer. Ceram. Soc . 32. 99.Google Scholar
  84. Liebertz, J. and Stahr S. (1983) L. Kristalloyr. 165 91–93.CrossRefGoogle Scholar
  85. Lin, J. T. (1990) Non-linear crystals for tunable coherent sources. Opt. Quantum Electron. 22, S283–S313.CrossRefGoogle Scholar
  86. Lin J. T. and Chen, C (1987) Choosing a nonlinear crystal, Lasers and Optronics, Nov. 87, 59–63.Google Scholar
  87. Lin, J. T. and Montgomery J. L. (1990) Temperature-tuned noncritically phase-matched frequency conversion in LiB305 crystal, Opt. Commun. 80, 159–165.CrossRefGoogle Scholar
  88. Lin, S., Sun, Z.. Wu. B. and Chen, C. (1990) The nonlinear optical characteristics of a LiB305 crystal, J. Appl. Phys. 67, 634 638.Google Scholar
  89. Lin S., Wu, B., Xie F. and Chen C. (1991a) Phase-matching retracing behavior: New features in LiB305, Appl. Phys. Lett. 59. 1541–1543.CrossRefGoogle Scholar
  90. Lin, S., Huang, J. Y., Ling, J., Chen, C. and Shen Y. R. (1991h) Optical parametric amplification in a lithium triborate crystal tunable from 0.65 to 2.5 μm, Appl. Phys. Lett. 59. 2805–2807.CrossRefGoogle Scholar
  91. Lu, S. F., Ho, M. Y. and Huand J. L. (1982) Acta Phys. Sin. 31, 948.Google Scholar
  92. McCarthy, M.J. and Hanna, D. C. (1992) Continuous-wave mode-locked singly resonant optical parametric oscillator synchronously pumped by a laser-diode-pumped Nd:YLF laser, Opt. Lett. 17 402–404.CrossRefGoogle Scholar
  93. Maker P. D., Terhune R. W.. Nissenoff M. and Savage C. M. (1962) Effects of dispersion and focusing on the production of optical harmonics, Phys. Rer. Lett. 8, 21–22.CrossRefGoogle Scholar
  94. Marshall, L. R.. Kasinski, L. Hays A. D. and Burnham, R. (1991) Efficient optical parametric oscillator at 1.6 μm. Opt. Lett. 16, 681–683.CrossRefGoogle Scholar
  95. Midwinter J. E. and Warner J. (1965) The effects of phase matching method and of uniaxial crystal symmetry on polar distribution of second-order non-linear optical polarization, Brit. J. Appl. Phys. 16, 1135–1142.CrossRefGoogle Scholar
  96. Miller, R. C. (1964) Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett. 5 17 19.Google Scholar
  97. Minck, R. W., Terhune, R. W. and Wang, C. C. (1966) Nonlinear optics, Appl. Opt. 51595–1612.CrossRefGoogle Scholar
  98. Miyazaki, K.. Sakai H. and Sato, T. (1986) Efficient deep-ultraviolet generation by frequency doubling in ß-BaB2O4 crystals, Opt. Lett. 11 797–799.CrossRefGoogle Scholar
  99. Nikogosyan, D. N. (1977) Nonlinear optics crystals (review and summary of data), Sot-. J. Quantum Electron. 7, 1 13.CrossRefGoogle Scholar
  100. Robertson, G.. Henderson, A. J. and Dunn, M. H. (1992) Broadly tunable LiB3O5 optical parametric oscillator, Appl. Phys. Lett. 60 271–273.Google Scholar
  101. Rosker, M. J.. Cheng, K. and Tang, C. L. (1985) Practical urea optical parametric oscillator for tunable generation throughout the visible and near-infrared, IEEE J. Quantum Electron. 21 1600–1606.CrossRefGoogle Scholar
  102. Sastry, B. S. R. and Hummel F. A. (1958) J. Amer. Ceram. Soc. 41 7.CrossRefGoogle Scholar
  103. Singh S. (1971) Non-linear optical materials, in: Handbook of Lasers, ed. Pressley, R. J.. Chemical Rubber Company, Cleveland, Ohio. pp. 489–525.Google Scholar
  104. Smith R. G. (1976) Optical parametric oscillators, in Laser, eds. Levine, A. K. and DeMaria, A. J. Marcel Dekker, New York, pp. 189–307.Google Scholar
  105. Tang, Y.. Cui. Y. and Dunn, M. H. (1992) Lithium triborate optical parametric oscillator pumped at 266 nm, Opt. Lett. 17 192–194.CrossRefGoogle Scholar
  106. Ukachi, T.. Lane, R. J., Bosenberg, W. R. and Tang, C. L. (1990) Measurements of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal, Appl. Phys. Lett. 57.980–982.CrossRefGoogle Scholar
  107. Vanherzeele H., Bierlein, J. D. and Zumsteg F. C. (1988) Index of refraction measurements and parametric generation in hydrothermally grown KTiOPO4, Appl. Opt. 27 3314–3316.CrossRefGoogle Scholar
  108. Velsko, S. P.. Webb M., Davis, L. and Huang, C. (1991) Phase-matched harmonic generation in lithium triborate (LBO), IEEE J. Quantum Electron. 27 2182–2192.CrossRefGoogle Scholar
  109. Wang, Y., Xu, Z.. Deng. D., Zheng, W., Liu, X., Wu, B. and Chen, C. (1991) Highly efficient visible and infrared ß-BaB4O4 optical parametric oscillator with pump reflection, Appl. Phys. Lett. 58 1461–1463.CrossRefGoogle Scholar
  110. Wu, B., Chen, N., Chen, C., Deng, D. and Xu, Z. (1989) Highly efficient ultraviolet generation at 355 nm in LiB3O5, Opt. Lett. 14 1080–1081.CrossRefGoogle Scholar
  111. Yariv, A. (1985) Optical Electronics, 3rd edn CBS College Publishing, New York.Google Scholar
  112. Yao, J. Q. and Fahlen, T. S. (1984) Calculation of optimum phase match parameters for the biaxial crystal KTiOPO4,.1. Appl. Phys. 55 65–68.CrossRefGoogle Scholar
  113. Yao, J. Q.. Shi, W. Q.. Millerd, J. E., Xu, G. F., Garmire, E. and Birnbaum M. (1990) Room-temperature 1.60–0.53–1tm second-harmonic generation with MgO:LiNbO3. Opt. Lett. 15 1339–1341.CrossRefGoogle Scholar
  114. Zernike F. and Midwinter, J. E. (1973) Applied Nonlinear Optics, Wiley, New York.Google Scholar
  115. Zhang, J. Y.. Huang, J. Y., Shen, Y. R., Chen, C. and Wu, B. (1991) Picosecond optical parametric amplification in lithium triborate, Appl. Phys. Lett. 58 213–215.CrossRefGoogle Scholar
  116. Zhong, S. D. (1990) Recent developments in the growth and nonlinear optical applications of KNbO3 crystals, Prog. Crystal Growth and Charact. 20 161–174.CrossRefGoogle Scholar
  117. Zumsteg, F. C.. Bierlein, J. D. and Gier, T. E. (1976) KxRb1 _xTiOPO4: A new nonlinear optical material, J. Appl. Phys. 47 4980–4985.CrossRefGoogle Scholar
  118. Zysset, B.. Biaggio, I. and Gunther, P. (1992) Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence, J. Opt. Soc. Am. B 9 380–386.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • M. Ebrahimzadeh
  • A. I. Ferguson

There are no affiliations available

Personalised recommendations