Advertisement

Some Theoretical and Numerical Approaches to Describing the Viscoelastic Properties of Polymer Systems

  • Yuri G. Yanovsky

Abstract

Polymers are widely used in practice and have a number of unique rheological and physicomechanical properties [1, 2, 3, 4, 5]. They differ from other substances in the size of their molecules, which are correctly called macromolecules. At temperatures above the glass transition temperature or melting point, a polymer system (concentrated solution or melt of a polymer) can be considered as a viscoelastic liquid whose behavior is determined by a system of weakly bound macromolecules. When a system is excited (mechanically or by heat), the macromolecules easily change their neighbors, but the intactness of each of them is not disturbed.

Keywords

Viscoelastic Property Polymer System Viscoelastic Behavior Brownian Dynamic Interphase Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferry, J.D.Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York, 1980.Google Scholar
  2. 2.
    deGennes, P.G. Scaling Concepts in Polymer Physics, Cornell Univ. Press, Ithaca, NY, 1979.Google Scholar
  3. 3.
    Gotlib, Yu.Ya., Dorinsky, A.A. and Svetlov, Yu.E.Fizicheskaya Kinetika Makromolekul (Physical Kinetics of Macromolecules), Khimiya, Moscow, 1986.Google Scholar
  4. 4.
    Lodge, A.S.Elastic Liquids, Academic Press, New York, 1964.Google Scholar
  5. 5.
    Doi, M. and Edwards, S.F.The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986.Google Scholar
  6. 6.
    Raju, V.R., Rachapudy, H. and Graessley, W.W.J. Polym. Sci, Polym. Phys. Ed., 17(7) (1979) 1223.CrossRefGoogle Scholar
  7. 7.
    Yanovsky, Yu.G., Pokrovsky, V.N., Kokorin, Yu.K., et al. Polym. Sci. USSR, 30(5) (1988) 1037.CrossRefGoogle Scholar
  8. 8.
    Lodge, T.P. and Schrag, J.L.Macromolecules, 15(5) (1982) 1376.CrossRefGoogle Scholar
  9. 9.
    Bird, B.B., Armstrong, R.C. and Hassager, C.Dynamics of Polymeric Liquids, Wiley, New York, 1977.Google Scholar
  10. 10.
    Astarita, G. and Marrucci, G.Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, New York, 1974.Google Scholar
  11. 11.
    Graessley, W.W.Adv. Polym. Sci., 16(1) (1974) 1.CrossRefGoogle Scholar
  12. 12.
    Rouse, P.E.J. Chem. Phys., 21(7) (1953) 1272.CrossRefGoogle Scholar
  13. 13.
    Zimm, B.H.J. Chem. Phys., 24 (1956) 269.CrossRefGoogle Scholar
  14. 14.
    Cerf, R.J. Phys. et Radium, 19(1) (1958) 122.CrossRefGoogle Scholar
  15. 15.
    Peterlin, A.J. Polym. Sci., 5(A2) (1967) 179.Google Scholar
  16. 16.
    Busse, W.F.J. Phys. Chem, 36 (1932) 2862.CrossRefGoogle Scholar
  17. 17.
    Ballard, D.G.H., Wignall, G.D. and Schelton, J.Eur. Polym. J. 9 (1973) 965.CrossRefGoogle Scholar
  18. 18.
    Cotton, J.P., Decker, D., Benoit, H., et al. Macromolecules, 7(6) (1974) 863.CrossRefGoogle Scholar
  19. 19.
    Flory, P.J.J. Chem. Phys., 17(3) (1949) 303.CrossRefGoogle Scholar
  20. 20.
    Edwards, S.F.Proc. Phys. Soc., 91 (1967) 513.CrossRefGoogle Scholar
  21. 21.
    Prager, S.J. Chem. Phys., 46(4) (1976) 1475.CrossRefGoogle Scholar
  22. 22.
    Edwards, S.F. and Grant, J.W.V.J. Phys. A, 6(8) (1973) 1169.CrossRefGoogle Scholar
  23. 23.
    Edwards, S.F. and Grant, J.W.V.J. Phys. A, 6(8) (1973) 1186.CrossRefGoogle Scholar
  24. 24.
    deGennes, P.G.J. Chem. Phys., 55(3) (1971) 572.CrossRefGoogle Scholar
  25. 25.
    Doi, M. and Edwards, S.F.J. Chem Soc., Faraday Trans., 74(10) (1978) 1789.Google Scholar
  26. 26.
    Doi, M. and Edwards, S.F.J. Chem Soc, Faraday Trans., 74(10) (1978) 1802.Google Scholar
  27. 27.
    Doi, M. and Edwards, S.F.J. Chem Soc, Faraday Trans., 74(10) (1978) 1818.Google Scholar
  28. 28.
    Pokrovsky, V.N. and Volkov, V.S.Vysokomol. Soed., 20(2) (1978) 255.Google Scholar
  29. 29.
    Pokrovsky, V.N. and Volkov, V.S.Vysokomol. Soed., 20(12) (1978) 2700.Google Scholar
  30. 30.
    Bueche, F.J. Chem. Phys., 20 (1952) 1959.CrossRefGoogle Scholar
  31. 31.
    Bueche, F.J. Chem. Phys., 40(2) (1952) 484.CrossRefGoogle Scholar
  32. 32.
    Pokrovsky, V.N. and Yanovsky, Yu.G.Rheol. Acta, 12(4) (1973) 280.Google Scholar
  33. 33.
    Pokrovsky, V.N.Statisticheskaya Mekhanica Razbavlennykh Suspenzii (Statistical Mechanics of Dilute Suspensions), Nauka, Moscow, 1978.Google Scholar
  34. 34.
    Tanner, J.Macromolecules, 4(6) (1971) 748.CrossRefGoogle Scholar
  35. 35.
    Klein, I.Macromolcules, 11(5) (1978) 852.CrossRefGoogle Scholar
  36. 36.
    Klein, I.Proc. Roy. Soc., London, 365A (1979) 53.Google Scholar
  37. 37.
    Klein, I.Macromolecules, 14(4) (1981) 460.CrossRefGoogle Scholar
  38. 38.
    Leger, L., Hervet, H. and Rondeles, F.Macromolecules, 14(6) (1981) 1732.CrossRefGoogle Scholar
  39. 39.
    Smith, B.A., Samulski, E.T., Vu, L.P., et al Phys. Rev. Lett., 52(1) (1984) 45.CrossRefGoogle Scholar
  40. 40.
    Nemoto, N., et al. Macromolecules, 18(2) (1985) 308.CrossRefGoogle Scholar
  41. 41.
    Fleischer, G.Polym. Bull., 9(2) (1983) 152.Google Scholar
  42. 42.
    VanNeerwall, E.D.Rubber Chem. and Techno., 58(3) (1985) 527.CrossRefGoogle Scholar
  43. 43.
    Tirrell, M.Rubber Chem. and Technol., 57(3) (1985) 523.CrossRefGoogle Scholar
  44. 44.
    Deschamps, H. and Leger, L.Macromolecules, 19(11) (1986) 2760.CrossRefGoogle Scholar
  45. 45.
    Kranbuehl, D.E.Macromolecules, 18(8) (1985) 1638.CrossRefGoogle Scholar
  46. 46.
    Marmonier, M.F.Phys. Rev. Lett., 55(10) (1985) 1078.CrossRefGoogle Scholar
  47. 47.
    DesCloiseaux, J.J. Phys. Lett., 45(1) (1984) 17.CrossRefGoogle Scholar
  48. 48.
    Volkov, V.S. and Vinogradov, G.V.Rheol. Acta, 23(3) (1984) 231.CrossRefGoogle Scholar
  49. 49.
    Volkov, V.S. and Vinogradov, G.V.Vysokomol. Soed., 29A(12) (1987) 2602.Google Scholar
  50. 50.
    Grebner, B.L. and Pokrovsky, V.N.Vysokomol. Soed., 29B(9) (1987) 704.Google Scholar
  51. 51.
    Volkov, V.S. and Vinogradov, G.V.J. Non-Newtonian Fluid Meek., 25(3) (1987) 261.CrossRefGoogle Scholar
  52. 52.
    Pokrovsky, V.N. and Kokorin, Yu.K.Vysokomol. Soed., 26B(8) (1984) 573.Google Scholar
  53. 53.
    Pokrovsky, V.N. and Kokorin, Yu.K.Vysokomol. Soed., 27B(10) (1985) 793.Google Scholar
  54. 54.
    Volkov, V.S., Pokrovsky, V.N. and Vinogradov, G.V.Vysokomol. Soed. ,28A(1)(1986) 117.Google Scholar
  55. 55.
    Pokrovsky, V.N. and Kokorin, Yu.K.Vysokomol. Soed., 29A(10) (1987) 2173.Google Scholar
  56. 56.
    Pushnograi, G. V. and Pokrovsky, V. N.Vysokomol. Soed., 30A(11)(1988) 2497.Google Scholar
  57. 57.
    Kokorin, Yu.K. and Pokrovsky, V.N.Vysokomol. Soed., 32A(12) (1990) 2409.Google Scholar
  58. 58.
    Pokrovsky, V.N. and Pushnograi, G.V.Mekhanika Zhidkosti i Gaza, 1 (1991) 71.Google Scholar
  59. 59.
    Flory, P.J.Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, NY, 1953.Google Scholar
  60. 60.
    Verdier, P.H.J. Chem. Phys., 45(6) (1966) 2122.CrossRefGoogle Scholar
  61. 61.
    Kargin, V.A. and Slonimsky, G.L.DAN SSSR, 62(2) (1948) 239.Google Scholar
  62. 62.
    Al-Nosimi, G.F., Martines-Mekler, G.C. and Wilson, C.A., J. Phys. Lett., 39(1978) 373.CrossRefGoogle Scholar
  63. 63.
    Freed, K.F. and Metin, H., J. Chem. Phys., 68 (1978) 4604.CrossRefGoogle Scholar
  64. 64.
    Yanovsky, Yu.G., Vinogradov, G.V., Volkov, V.S.et al. In: Proceedings of International Congress on Rheology, Plenum Press, New York, 1980, p. 483.Google Scholar
  65. 65.
    Yanovsky, Yu.G., Vinogradov, G.V. and Ivanova, L.I., New Developments in Polymer Rheology, Inst. Petrochem. Sym., Moscow, 1980.Google Scholar
  66. 66.
    Vinogradov, G.V., Yanovsky, Yu.G. and Ivanova, L.I., Intern. J. Polym. Mater., 9 (1982) 257.CrossRefGoogle Scholar
  67. 67.
    Montford, J.P., Marin, G., and Monge, Ph., Macromolecules, 17 (1984) 1551.CrossRefGoogle Scholar
  68. 68.
    Daound, M., and deGennes, P.G.J. Polymer Sci., Polymer Phys. Ed., 17 (1979) 1971.CrossRefGoogle Scholar
  69. 69.
    Ronca, G., J. Polym. Phys., 79 (1983) 1031.Google Scholar
  70. 70.
    Richter, D., Farago, B.K., Fetteas, L.J.et al. Phys. Rev. Letters, 64 (1990) 1389.CrossRefGoogle Scholar
  71. 71.
    Privalko, V.P., Novikov, V.V. and Yanovsky, Yu.G.Osnovy Teplofiziki i Reofiziki Polimernykh sistem (Fundamentals of Thermophysics and Rheophysics of Polymer systems), Naukova Dumka, Kiev, 1990.Google Scholar
  72. 72.
    Bush, M.B. and Tanner, R.I.Int. J. Num. Meth. Fluids, 3 (1983) 71.CrossRefGoogle Scholar
  73. 73.
    Mitsoulis, E. and Vlachopoulos, J. Adv. Polym. Technol., 4 (1984) 107.CrossRefGoogle Scholar
  74. 74.
    Bush, M.B., Milthore, J.F. and Tanner, R.I.J. Non-Newtonian Fluid Mech., 22 (1987) 129.CrossRefGoogle Scholar
  75. 75.
    Kistler, S.F. and Scrivenm, L.E.Int. J. Num. Meth. Fluids, 4 (1984) 207.CrossRefGoogle Scholar
  76. 76.
    Marchal, J.M. and Crochet, M.J.J. Non-Newtonian Fluid Meek., 17 (1985) 157.CrossRefGoogle Scholar
  77. 77.
    Malkus, D.S.Finite Element Methods for Viscoelastic Flow, Viscoelasticity and Rheology, Academic Press, New York, 1985.Google Scholar
  78. 78.
    Beris, A.N., Armstrong, R.C. and Brown, R.A.J. Non-Newtonian Fluid Mech., 22 (1987) 129.CrossRefGoogle Scholar
  79. 79.
    Marchal, J.M. and Crochet, M.J.J. Non-Newtonian Fluid Mech., 26 (1987) 77.CrossRefGoogle Scholar
  80. 80.
    Papanastasion, A.C., Scriven, L.E. and Macosko, C.W.J. Non-Newtonian Fluid Mech., 22 (1987) 271.CrossRefGoogle Scholar
  81. 81.
    Mitsoulis, E. Numerical simulation of viscoelastic fluids. In: Encyclopedia of Fluid Mechanics, Ed. N.P. Cheremisinoff, Gulf Publishing, Houston, TX, 1990, Chapter 21.Google Scholar
  82. 82.
    VoigtW.Lehrbuch der Kristalphysik, Abhandl. Akad. Wiss, Gottingen, 1899.Google Scholar
  83. 83.
    Reuss, R.Z. Angew, Math, und Mech., 9(1) (1929) 49.CrossRefGoogle Scholar
  84. 84.
    Nielsen, L.E.J. Appl. Polym. Sci., 21(6) (1977) 1579.CrossRefGoogle Scholar
  85. 85.
    Carey, J.F.Polym. Eng. Sci., 25(16) (1985) 1017.CrossRefGoogle Scholar
  86. 86.
    Manson, J.A. and Sperling, L.H.Polymer Blends and Composites, Plenum Press, New York, 1976.Google Scholar
  87. 87.
    Spathis, E.P. and Theocaris, P.S.Int. J. Adhesion and Adhesives, 1(4) (1981) 195.CrossRefGoogle Scholar
  88. 88.
    Kerner, E.H.Proc. Phys. Soc., 69B (1956) 808.Google Scholar
  89. 89.
    Christensen, R.Mechanics of Composite Materials, Wiley, New York, 1979.Google Scholar
  90. 90.
    Lewis, T.B. and Nielsen, L.E.J. Appl. Polym. Sci., 14B (1970) 1449.CrossRefGoogle Scholar
  91. 91.
    Nielsen, L.E.Ann. Phys., 41(11) (1970) 4626.Google Scholar
  92. 92.
    Takayanagi, M., Uemura, S. and Minami, S.J. Polym. Sci., 5(1) (1967) 113.CrossRefGoogle Scholar
  93. 93.
    Kenunen, I.V., Volodin, V.P., Lishansky, I.C., et al. Mekhanika Komposit. Mater., 4 (1986) 746.Google Scholar
  94. 94.
    Prozelhof, R.C., Throne, J.H. and Ruetsch, R.R.Polym. Eng. Sci., 16(9) (1976) 615.CrossRefGoogle Scholar
  95. 95.
    James, F.C.Polym. Eng. Sci., 25(16) (1985) 1017.CrossRefGoogle Scholar
  96. 96.
    Iahai, O. and Cohen, H.J.Int. J. Mech. Sci., 9(3) (1987) 539.Google Scholar
  97. 97.
    TongSun, DajnnChen and HanxinZhon. J. China Text. Univ. ,5(1) (1988) 1.Google Scholar
  98. 98.
    Lipatov, Yu.S.Fiziko-khimiya Polimerov (Physicochemistry of Polymers), Khimiya, Moscow, 1975.Google Scholar
  99. 99.
    Sideridis, E.Comp. Sci. Technol, 37(2) (1986) 305.CrossRefGoogle Scholar
  100. 100.
    Korsakov, Yu.K., Yartsev, I.K., Baranovsky, V.M., et al. Plastmassy, 12 (1980) 19.Google Scholar
  101. 101.
    Lipatov, Yu.S.Sintez i Modifikatsiya Polimerov (Synthesis and Modification of Polymers), Nauka, Moscow, 1976.Google Scholar
  102. 102.
    Birnstein, T.M., Skvortsova, A.M. and Sariban, A.A.Vysokomol. Soed. ,17A(11)(1975) 2558.Google Scholar
  103. 103.
    Skvortsova, A.M., Gorbunova, A.A., Zhulina, E.B., et al. Vysokomol. Soed., 20A(4) (1978) 816.Google Scholar
  104. 104.
    Dadivanian, A.K. and Agranova, S.A.Vysokomol. Soed., 22A(7) (1980) 1499.Google Scholar
  105. 105.
    Sarkisian, V.A., Asratian, M.G., Mhatarian, A.A., et al. Vysokomol. Soed., 27 (1985) 1331.Google Scholar
  106. 106.
    Rabotnov, Yu.N.Mekhanika Deformiruemogo Tver dogo Tela (Mechanics of Solid Deformation), Nauka, Moscow, 1988.Google Scholar
  107. 107.
    Brammeler, A., Allan, R. and Hemen, Ya.Slabozapolnenye Matritsy (Slightly Filled Matrices), Energiya, Moscow, 1975.Google Scholar
  108. 108.
    Segerlind, L.Applied Finite Element Analysis, Academic Press, New York, 1976.Google Scholar
  109. 109.
    Denisov, E.E.Geometrischeskii Smysl Anisotropnoi Teploprovodnosti (Geometric Interpretation of Anisotropic Heat Conduction), Msyl’, Minsk, 1987.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Yuri G. Yanovsky
    • 1
  1. 1.Institute of Applied MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations