Skip to main content

A chaperonin from a thermophilic bacterium, Thermus thermophilus

  • Chapter
Molecular Chaperones

Summary

Unlike Escherichia coli chaperonins, a chaperonin (cpn) from a thermophilic bacterium, Thermus thermophilus, consisting of homologues to GroEL (cpn 60) and GroES (cpn 10) is co-purified as a large complex. Thermus chaperonin shows a bullet-like shape in the side view seen by electron microscopy, and antibody against cpn 10 binds only to the round side of the bullet. We conclude that a single cpn 60-heptamer ring with two stripes stacks into two layers and a cpn 10 oligomer binds to one side of the layers. The purified Thermus chaperonin contains endogenously bound ADP, and incubation with ATP causes a partial dissociation of chaperonin into cpn 60 monomers and a cpn 10 heptamer. The effect of Thermus chaperonin on protein refolding upon dilution from guanidine HCl is different at three temperature ranges. At high temperatures above 55°C, where the native proteins are stable but their spontaneous foldings fail, the chaperonin induces productive folding in an ATP-dependent manner. At middle temperatures (25–55°C) where spontaneous foldings of the enzymes occur, the chaperonin slows down the rate of folding without changing the final yield of productive folding. At lower temperatures below 25°C where spontaneous foldings also occur, the chaperonin arrests the folding even in the presence of ATP. When a solution of relatively heat labile protein is incubated at high temperatures, and then residual activity of the protein is measured at its optimal temperature after incubation with ATP, the temperature that causes irreversible heat denaturation of the protein is elevated about 10°C by inclusion of Thermus chaperonin in the solution. Furthermore, once the folding intermediate of a protein is captured by Thermus chaperonin, it retains the ability to resume productive folding even after exposure to the otherwise denaturing high temperature. These results indicate that during heat denaturation proteins assume the common structure which is recognizable by the chaperonin. Finally, a ‘folding intermediate reservoir’ model to explain the effect of chaperonin is proposed, and is compared with a ‘marsupium’ model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bochkareva, E.S., Lissin, N.M., Flynn, G.C., Rothman, J.E. & Girshovich, A.S. 1992 Positive cooperativity in the functioning of molecular chaperone GroEL. J. biol. Chem. 267, 6796–6800.

    PubMed  CAS  Google Scholar 

  • Buchner, J., Schmidt, M., Fuchs, M. et al. 1991 GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586–1591.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R.J. & van der Vies, S.M. 1991 Molecular chaperones. A. Rev. Biochem. 60, 321–347.

    Article  CAS  Google Scholar 

  • Gatenby, A.A., Viitanen, P.V. & Lorimer, G.H. 1990 Chaperonin assisted polypeptide folding and assembly: implications for the production of functional proteins in bacteria. Trends Biotechnol. 8, 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Gething, M.-J. & Sambrook, J. 1992 Protein folding in the cell. Nature, Lond. 355, 33–45.

    Article  CAS  Google Scholar 

  • Goloubinoff, P., Christeller, J.T., Gatenby, A.A. & Lorimer, G.H. 1989 Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature, Lond. 342, 884–889.

    Article  CAS  Google Scholar 

  • Hemmingsen, S.M., Woolford, C., van der Vies, S.M. et al. 1988 Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature, Lond. 333, 330–334.

    Article  CAS  Google Scholar 

  • Hendrix, R.W. 1979 Purification and properties of groE, a host protein involved in bacteriophage assembly. J. molec. Biol. 129, 375–392.

    Article  PubMed  CAS  Google Scholar 

  • Hohn, T., Hohn, B., Engel, A., Wurtz, M. & Smith, P.R. 1979 Isolation and characterization of the host protein groE involved in bacteriophage lambda assembly. J. molec. Biol. 129, 359–373.

    Article  PubMed  CAS  Google Scholar 

  • Höll-Neugebauer, B., Rudolph, R., Schmidt, M. & Buchner, J. 1991 Reconstitution of a heat shock effect in vitro: influence of groE on the thermal aggregation of α-glucosidase from yeast. Biochemistry 30, 11609–11614.

    Article  PubMed  Google Scholar 

  • Ishii, N., Taguchi, H. & Yoshida, M. 1992 Structure of holo-chaperonin studied with electron microscopy: oligomeric cpn 10 on top of two layers of cpn 60 rings with two stripes each. FEBS Lett. 299, 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, N., Taguchi, H., Yoshida, M., Yoshimura, H. & Nagayama, K. 1991 Image analysis by electron microscopy of two-dimensional crystals developed on a mercury surface of chaperonin from Thermus thermophilus. J. Biochem. 110, 905–908.

    PubMed  CAS  Google Scholar 

  • Kiefhaber, T., Rudolph, R., Kohler, H.-H. & Buchner, J. 1991 Protein aggregation in vitro and in vivo: A quantitative model of the kinetic competition between folding and aggregation. Bio Technology 9, 825–829.

    Article  PubMed  CAS  Google Scholar 

  • Lorimer, G.H. 1992 Role of accessory proteins in protein folding. Curr. Opinion Struct. Biol. 2, 26–34.

    Article  Google Scholar 

  • Martin, J., Langer, T., Boteva, R., Schramel, A., Horwich, A.L. & Hard, F.-U. 1991 Chaperonin-mediated protein folding at the surface of groEL through a ‘molten globule’-like intermediate. Nature, Lond. 352, 36–42.

    Article  CAS  Google Scholar 

  • Miller, S.G., Leclerc, R.F. & Erdos, G.W. 1990 Identification and characterization of a testis-specific isoform of a chaperonin in a moth, Heliothis virescens. J. molec. Biol. 214, 407-422.

    Article  PubMed  CAS  Google Scholar 

  • Sörbo, B.H. 1953 Crystalline rhodanese I. Purification and physicochemical examination. Acta Chem. Scand. 7, 1129–1136.

    Article  Google Scholar 

  • Taguchi, H., Konishi, J., Ishii, N. & Yoshida, M. 1991 A chaperonin from a thermophilic bacterium, Thermus thermophilus, that controls refolding of several thermophilic enzymes. J. biol. Chem. 266, 22411–22418.

    PubMed  CAS  Google Scholar 

  • Viitanen, P.V., Lorimer, G.H., Seetharam, R. et al. 1992 Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. J. biol. Chem. 267, 695–698.

    PubMed  CAS  Google Scholar 

  • Viitanen, P.V., Lubben, T.H., Reed, J., Goloubinoff, P., O’Keefe, D.P. & Lorimer, G.H. 1990 Chaperonin-facilitated refolding of ribulose bisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. Biochemistry 29, 5665–5671.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yoshida, M., Ishii, N., Muneyuki, E., Taguchi, H. (1993). A chaperonin from a thermophilic bacterium, Thermus thermophilus . In: Ellis, R.J., Laskey, R.A., Lorimer, G.H. (eds) Molecular Chaperones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2108-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2108-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4935-1

  • Online ISBN: 978-94-011-2108-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics