Skip to main content

What does protein refolding in vitro tell us about protein folding in the cell?

  • Chapter
Molecular Chaperones
  • 184 Accesses

Summary

The classical in vitro denaturation—renaturation studies by Anson, Anfinsen, Neurath, Pauling and others clearly suggested that the primary structure of proteins determines all higher levels of protein structure. Protein folding in the cell is inaccessible to a detailed analysis of its kinetic mechanism. There are obvious differences: nascent proteins acquire their native structure co- and post-translationally, with half-times in the minutes range, whereas refolding starts from the complete polypeptide chain, with rates varying from seconds to days. In the cell, accessory proteins are involved in regulating the rate of folding and association. Their role can be analysed both in vivo, by mutant studies, or by coexpression together with recombinant model proteins, and in vitro, by folding experiments in the absence and in the presence of ‘foldases’ and molecular chaperones, with the following general results: (i) folding is a sequential process involving native-like structural elements and a ‘collapsed state’ as early intermediates; (ii) the major side-reaction is caused by ‘kinetic partitioning’ between correct folding and wrong aggregation; (iii) rate-determining steps may be assisted by protein disulphide isomerase, peptidyl prolyl-cis-trans-isomerase, and molecular chaperones; and (iv) extrinsic factors, not encoded in the amino acid sequence, may be of crucial importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anson, M.L. 1945 Protein denaturation and the properties of protein groups. Adv. Prot. Chem. 2, 361–386.

    Article  CAS  Google Scholar 

  • Brems, D.N. & Baldwin, R.L. 1984 Amide proton exchange used to monitor the formation of a stable α-helix by residues 3 to 13 during folding of RNase S. J. molec. Biol. 180, 1141–1156.

    Article  PubMed  CAS  Google Scholar 

  • Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F.X. & Kiefhaber, T. 1991 GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586–1591.

    Article  PubMed  CAS  Google Scholar 

  • Bulleid, N.J. & Freedman, R.B. 1988 Defective co-translational formation of disulphide bonds in PDI-deficient microsomes. Nature, Lond. 335, 649–651.

    Article  CAS  Google Scholar 

  • Creighton, T.E. 1988 On the relevance of non-random polypeptide conformations for protein folding. Biophys. Chem 31, 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Creighton, T.E., Weissman, J.S. & Kim, P.S. 1992 The disulphide folding pathway of BPTI. Science, Wash. 256, 111–114.

    Article  CAS  Google Scholar 

  • Ellis, R.J. & van der Vies, S.M. 1991 Molecular chaper-ones. A. Rev. Biochem. 60, 321–347.

    Article  CAS  Google Scholar 

  • Flynn, G.C., Chappell, T.G. & Rothman, J.E. 1989 Peptide binding and release by proteins implicated as catalysts of protein assembly. Science, Wash. 245, 385–390.

    Article  CAS  Google Scholar 

  • Freedman, R.B. 1991 Protein disulphide isomerase: an enzyme that catalyzes protein folding in the test tube and in the cell. In Conformations and forces in protein folding (ed. B. R. Nall & K. A. Dill), pp. 204–214. AAAS Washington.

    Google Scholar 

  • Gottschalk, N. & Jaenicke, R. 1991 Authenticity and reconstitution of immobilized enzymes. Biotech. Appl. Biochem. 14, 324–335.

    CAS  Google Scholar 

  • Hardy, S.J.S. & Randall, L.L. 1991 A kinetic partitioning model of selective binding of non-native proteins by SecB. Science, Wash. 251, 439–443.

    Article  CAS  Google Scholar 

  • Hartl, F.U., Martin, J. & Neupert, W. 1992 Protein folding in the cell: The role of molecular chaperones hsp 70 and hsp 60. A. Rev. Biophys. Biomol. Struct. 21, 293–322.

    Article  CAS  Google Scholar 

  • Hawkins, H.C. & Freedman, R.B. 1991 The reactivities and ionization properties of the active site dithiol groups of mammalian PDI. Biochem. J. 275, 335–339.

    PubMed  CAS  Google Scholar 

  • Hawkins, H.C., de Nardi, M. & Freedman, R.B. 1991a Redox properties and cross linking of the dithiol/disul-phide active sites of mammalian PDI. Biochem. J. 275, 341–348.

    PubMed  CAS  Google Scholar 

  • Hawkins, H.C., Blackburn, E.G. & Freedman, R.B. 1991b Comparison of the activities of PDI in catalysing disulphide isomerisation in a protein substrate. Biochem. J. 275, 349–353.

    PubMed  CAS  Google Scholar 

  • Höll-Neugebauer, B., Rudolph, R., Schmidt, M. & Buchner, J. 1991 Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of α-glucosidase from yeast. Biochemistry 30, 11609–11614.

    Article  PubMed  Google Scholar 

  • Hurtley, S.M. & Helenius, A. 1989 Protein oligomerization in the ER. A. Rev. Cell. Biol. 5, 277–307.

    Article  CAS  Google Scholar 

  • Jaenicke, R. 1987 Folding and association of proteins. Prog. Biophys. molec. Biol. 49, 117–237.

    Article  CAS  Google Scholar 

  • Jaenicke, R. 1988 Is there a code of protein folding? In Protein structure and protein engineering, vol. 39 (Colloquium Mosbach) (ed. E.-L. Winnacker & R. Huber), pp. 16–36. Berlin, Heidelberg & New York: Springer-Verlag.

    Google Scholar 

  • Jaenicke, R. 1991a Protein stability and molecular adaptation to extreme conditions. Eur. J. Biochem. 202, 715–728.

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke, R. 1991b Protein folding: local structures, domains, subunits and assemblies. Biochemistry 30, 3147–3161.

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke, R. 1991c Protein folding. In Applications of enzyme biotechnology (ed. J. W. Kelly & T. O. Baldwin), pp.137–152. New York & London: Plenum Press.

    Google Scholar 

  • Kern, G., Schülke, N., Schmid, F.X. & Jaenicke, R. 1992a Quaternary structure and stability of internal, external and core-glycosylated invertase from yeast. Protein Sci. 1, 120–131.

    Article  PubMed  CAS  Google Scholar 

  • Kern, G., Schmidt, M., Buchner, J. & Jaenicke, R. 1992b Glycosylation inhibits the interaction of invertase with the chaperone GroEL. FEBS Lett. 305, 203–205.

    Article  PubMed  CAS  Google Scholar 

  • Landry, S.J. & Gierasch, L.M. 1991 The chaperonin GroEL binds a polypeptide in an α-helical conformation. Biochemistry 30, 7359–7362.

    Article  PubMed  CAS  Google Scholar 

  • Langer, T., Lu Chi, Echols, H., Flanagan, J., Hayer, M.K. & Hartl, F.-U. 1992 Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, Lond. 356, 683–689.

    Article  CAS  Google Scholar 

  • Lorimer, G.H. 1992 Role of assessory proteins in protein folding. Curr. Opin. Struct. Biol. 2, 26–34.

    Article  Google Scholar 

  • Lyles, M.M. & Gilbert, H.F. 1991 Catalysis of the oxidative folding of RNaseA by PDI: Dependence of the rate on the composition of the redox buffer. Biochemistry 30, 613–619.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J., Horvich, A.L. & Hartl, F.U. 1992 Role of chaperonin hsp60 in preventing protein denaturation under heat-stress. Nature, Lond. (In the press.)

    Google Scholar 

  • Martin, J., Langer, T., Boteva, R., Schramel, A., Horvich, A.L. & Hartl, F.-U. 1991 Chaperonin-mediated protein folding at the surface of GroEL through a ‘molten globule’-like intermediate. Nature, Lond. 352, 36–42.

    Article  CAS  Google Scholar 

  • Mendoza, J.A., Rogers, E., Lorimer, G.H. & Horowitz, P.M. 1991a Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J. biol. Chem. 266, 13044–13049.

    PubMed  CAS  Google Scholar 

  • Mendoza, J.A., Rogers, E., Lorimer, G.H. & Horowitz, P.M. 1991b Unassisted refolding of urea-unfolded rhoda-nese. Nature, Lond. 266, 13587–13591.

    CAS  Google Scholar 

  • Noiva, R. & Lennarz, W.J. 1992 Protein disulphide isomerase. J. biol. Chem. 267, 3553–3556.

    PubMed  CAS  Google Scholar 

  • Pelham, H.R.B. 1989 Control of protein exit from the ER. A. Rev. Cell. Biol. 5, 1–23.

    Article  CAS  Google Scholar 

  • Phipps, B.M., Hoffmann, A., Stetter, K.O. & Baumeister, W. 1991 A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J. 10, 1711–1722.

    PubMed  CAS  Google Scholar 

  • Popot, J.-L., Gerchman, S.-E. & Engelman, D.M. 1987 Refolding of bacteriorhodopsin in lipid bilayers. J. molec. Biol. 198, 655–676.

    Article  PubMed  CAS  Google Scholar 

  • Randall, L.L., Topping, T.B. & Hardy, S.J.S. 1990 No specifie recognition of leader peptide by SecB, a chaper-one involved in protein export. Science, Wash. 248, 860–863.

    Article  CAS  Google Scholar 

  • Rehaber, V. & Jaenicke, R. 1992 Stability and reconstitution of GAPDH from the hyperthermophilic eubacterium Thermotoga maritima. J. biol. Chem. 267, 10999–11006.

    PubMed  CAS  Google Scholar 

  • Rosen, M.K. & Schreiber, S.L. 1992 Natural products as probes of cellular function: Studies on immunophilins. Angew. Chem. Int. Ed. (Engl.) 31, 384–400.

    Article  Google Scholar 

  • Rothman, J.E. & Schmid, S.L. 1986 Enzymatic recycling of clathrin from coated vesicles. Cell 46, 5–9.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph, R. & Fuchs, I. 1983 Influence of glutathione on the reactivation of enzymes containing cysteine or cystine. Hoppe-Seyler’s Z. Physiol. Chem. 364, 813–820.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, F.X., Mayr, T., Mücke, M. & Schönbrunner, E.R. 1993 Prolyl isomerases: the role in protein folding. Adv. Protein Chem. (In the press.)

    Google Scholar 

  • Schmidt, M. & Buchner, J. 1992 Interaction of GroE with an all-β protein. J. biol. Chem. 267, 16829–16833.

    PubMed  CAS  Google Scholar 

  • Scholtz, J.M. & Baldwin, R.L. 1992 The mechanism of α-helix formation by peptides. A. Rev. Biophys. biomolec. Struct. 21, 95–118.

    Article  CAS  Google Scholar 

  • Surrey, T. & Jähnig, F. 1992 Refolding and oriented insertion of a membrane protein into a lipid bilayer. Proc. natn. Acad. Sci. U.S.A. 89, 7457–7461.

    Article  CAS  Google Scholar 

  • Taguchi, H., Konishi, J., Ishii, N. & Yoshida, M. 1991 A chaperonin from a thermophilic bacterium, Thermus thermophilus, that controls refolding of several thermophilic enzymes. J. biol. Chem. 266, 22411–22418.

    PubMed  CAS  Google Scholar 

  • Trent, J.D., Nimmesgern, E., Wall, J.S., Hard, F.-U. & Horwich, A.L. 1991 A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein TCP1. Nature, Lond. 354, 490–493.

    Article  CAS  Google Scholar 

  • Urfer, R. & Kirschner, K. 1992 The importance of surface loops for stabilizing an eightfold βα barrel protein. Protein Sci. 1, 31–45.

    Article  PubMed  CAS  Google Scholar 

  • van der Vies, S.M., Viitanen, P.V., Gatenby, A.A., Lorimer, G.H. & Jaenicke, R. 1992 Conformational states of Rubisco and their interaction with chaperonin 60. Biochemistry 31, 3635–3644.

    Article  PubMed  Google Scholar 

  • Viitanen, P.V., Lubben, T.H., Reed, J., Goloubinoff, P., O’Keefe, D.P. & Lorimer, G.H. 1990 Chaperonin-facilitated refolding of Rubisco and ATP hydrolysis by chaperonin 60 are K+ dependent. Biochemistry 29, 5665–5671.

    Article  PubMed  CAS  Google Scholar 

  • Viitanen, P.V., Gatenby, A.A. & Lorimer, G.H. 1992 Purified GroEL interacts with the nonnative states of a multitude of E. coli proteins. Protein Sci. 1, 361–369.

    Google Scholar 

  • Wetlaufer, D.B. 1981 Folding of protein fragments. Adv. Protein Chem. 34, 91–69.

    Google Scholar 

  • Wright, P.E., Dyson, H.J. & Lerner, RA. 1988 Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry 27, 7167–7175.

    Article  PubMed  CAS  Google Scholar 

  • Yu, M.-H, & King, J. 1988 Surface amino acids as sites of ts folding mutations in the P22 tailspike protein. J. biol. Chem. 263, 1424–1431.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jaenicke, R. (1993). What does protein refolding in vitro tell us about protein folding in the cell?. In: Ellis, R.J., Laskey, R.A., Lorimer, G.H. (eds) Molecular Chaperones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2108-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2108-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4935-1

  • Online ISBN: 978-94-011-2108-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics