Advertisement

The Escherichia coli chaperones involved in DNA replication

Chapter
  • 135 Downloads

Summary

Mutations in the Escherichia coli heat shock genes, dnaK, dnaJ or grpE, alter host DNA and RNA synthesis, degradation of other proteins, cell division and expression of other heat shock genes. They also block the initiation of DNA replication of bacteriophages λ and P1, and the mini-F plasmid. An in vitro λDNA replication system, composed entirely of purified components, enabled us to describe the molecular mechanism of the dnaK, dnaJ and grpE gene products. DnaK, the bacterial hsp 70 homologue, releases λP protein from the preprimosomal complex in an ATP- and DnaJ-dependent reaction (GrpE-independent initiation of λDNA replication). In this paper, I show that, when GrpE is present, λP protein is not released from the preprimosomal complex, rather it is translocated within the complex in such a way that it does not inhibit DnaB helicase activity. Translocation of λP triggers the initiation event allowing DnaB helicase to unwind DNA near the oriλ sequence, leading to efficient λDNA replication. Chaperone activity of the DnaK-DnaJ-GrpE system is first manifested in the selective binding of these heat shock proteins to the preprimosomal complex, followed by its ATP-dependent rearrangement. I show that DnaJ not only tags the preprimosomal complex for recognition by DnaK, but also stabilizes the multi-protein structure. GrpE also participates in the binding of DnaK to the preprimosomal complex by increasing DnaK’s affinity to those λP proteins which are already associated with DnaJ. After attracting DnaK to the preprimosomal complex, DnaJ and GrpE stimulate the ATPase activity of DnaK, triggering conformational changes in DnaK which are responsible for the rearrangement of proteins in the preprimosomal complex and recycling of these heat shock proteins. The role of DnaK, DnaJ and GrpE in λDNA replication is in sharp contrast to our understanding of their role in the oriC, P1, and probably mini-F DNA replication systems. In the cases of oriC and P1 DNA replication, these heat shock proteins activate initiation factors before they are in contact with DNA, and are not required during the subsequent steps leading to the initiation of DNA replication. The common feature of DnaK, DnaJ and GrpE action in these systems is their ATP-dependent disaggregation or rearrangement of protein complexes formed before or during initiation of DNA replication.

Keywords

Heat Shock Protein Replication System Replication Protein Heat Shock Gene Replication Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfano, C. & McMacken, R. 1988 The role of template superhelicity in the initiation of bacteriophage λDNA replication. Nucl. Acids Res. 16, 9611–9630.PubMedCrossRefGoogle Scholar
  2. Alfano, G. & McMacken, R. 1989a Ordered assembly of nucleoprotein structure at the bacteriophage λ replication origin during the initiation of DNA replication. J. biol. Chem. 260, 10699–10708.Google Scholar
  3. Alfano, C. & McMacken, R. 1989b Heat shock proteins-mediated disassembly of nucleoprotein structure is required for the initiation of bacteriophage XDNA replication. J. biol. Chem. 264, 10709–10718.PubMedGoogle Scholar
  4. Ang, D., Liberek, K., Skowyra, D., Zylicz, M. & Georgopoulos, C. 1991 Biological role and regulation of the universally conserved heat shock proteins. J. biol. Chem. 266, 24233–24236.PubMedGoogle Scholar
  5. Banecki, B., Zylicz, M., Bertoli, E., Tanfani, F. 1992 Structural and functional relationships in Dnak and Dnak 756 heat shock proteins from E. coli. J. biol. Chem. 267, 25051–25058.Google Scholar
  6. Bardwell, J.C.A. & Craig, E.A. 1984 Major heat shock gene of Drosophila and Escherichia coli heat-inducible dnaK gene are homologous. Proc. natn. Acad. Sci. U.S.A. 81, 848–852.CrossRefGoogle Scholar
  7. Beckmann, R.P., Mizzen, L. & Welch, W. 1990 Interactions of hsp 70 with newly synthesized proteins: implication for protein folding and assembly. Science, Wash. 248, 859–856.Google Scholar
  8. Bork, P., Sander, C. & Valencia, A. 1992 An ATPase domain common to procaryotic cell cycle proteins, sugar kinases, actin and hsp 70 heat shock proteins. Proc. natn. Acad. Sci. U.S.A. 89, 7290–7294.CrossRefGoogle Scholar
  9. Craig, E.A. & Gross, C.A. 1991 Is hsp 70 the cellular thermometer? Trends biochem. Sci. 16, 135–140.PubMedCrossRefGoogle Scholar
  10. Dodson, M., Roberts, J., McMacken, R. & Echols, H. 1985 Specialized nucleoprotein structures at the origin of replication of bacteriophage λ: complexes with λO, λP and Escherichia coli DnaB proteins. Proc. natn. Acad. Sci. U.S.A. 82, 4678–4682.CrossRefGoogle Scholar
  11. Dodson, M., Echols, H., Wickner, S., Alfano, C., Mensa-Wilmot, K., Gomes, B., LeBowitz, J.H., Roberts, J.D. & McMacken, R. 1986 Specialized nucleoprotein structures at the origin of replication of bacteriophage λ: localized unwinding of duplex DNA by six-protein reaction. Proc. natn. Acad. Sci. U.S.A. 83, 7638–7642.CrossRefGoogle Scholar
  12. Dodson, M., McMacken, R. & Echols, H. 1989 Specialized nucleoprotein structures of the origin of replication of bacteriophage λ. J. biol. Chem. 264, 10719–10725.PubMedGoogle Scholar
  13. Fayet, O., Louarn, J.M. & Georgopoulos, C. 1986 Suppression of the Escherichia coli dnaA46 mutation by amplification of the groES and groEL genes. Molec. gen. Genet. 202, 435–445.PubMedCrossRefGoogle Scholar
  14. Flynn, G.C., Pohl, J., Flocco, M.T. & Rothman, J.E. 1991 Peptide-binding specificity of the molecular chaperone BiP. Nature, Lond. 353, 726–730.CrossRefGoogle Scholar
  15. Gamer, J., Bujard, H. & Bukau, B. 1992 Physical interaction between heat shock proteins DnaK, DnaJ and GrpE and the bacterial heat shock transcription factor σ32. Cell 69, 833–842.PubMedCrossRefGoogle Scholar
  16. Georgopoulos, C.P. & Herskowitz, I. 1971 Escherichia coli mutants blocked in lambda DNA synthesis. In The bacteriophage lambda (ed. A. D. Hershey), pp. 553–564. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  17. Georgopoulos, C., Ang, D., Liberek, K. & Zylicz, M. 1990 Properties of the Escherichia coli heat shock proteins and their role in bacteriophage growth. In Stress protein in biology and medicine (ed. R. I. Morimoto, A. Tissieres & C. Georgopoulos), pp. 191–221. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  18. Georgopoulos, C. 1992 The emergence of the chaperone machines. Trends biochem. Sci. 17, 295–299.PubMedCrossRefGoogle Scholar
  19. Gross, C.A., Straus, D.B., Erickson, J.W. & Yura, T. 1990 The function and regulation of heat shock proteins in Escherichia coli. In Stress proteins in biology and medicine (ed. R. I. Morimoto, A. Tissieres & C. Georgopoulos), pp. 167–189. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  20. Hwang, D.S., Crooke, E. & Romberg, A. 1990 Aggregated DnaA protein is dissociated and activated for DNA replication by phospholipase or DnaK protein. J. biol. Chem. 265, 19244–19248.PubMedGoogle Scholar
  21. Hwang, D.S. & Kaguni, J.M. 1991 DnaK protein stimulates a mutant form of DnaA protein in Escherichia coli DNA replication. J. biol. Chem. 266, 7537–7541.PubMedGoogle Scholar
  22. Kawasaki, Y., Wada, C. & Yura, T. 1990 Roles of Escherichia coli heat shock proteins DnaK, DnaJ and GrpE in miniF plasmid replication. Molec. gen. Genet. 220, 277–282.PubMedGoogle Scholar
  23. Kawasaki, Y., Wada, C. & Yura, T. 1992 Binding of RepE initiator protein to mini-F DNA origin (ori2). J. biol. Chem. 267, 11520–11524.PubMedGoogle Scholar
  24. Landry, S.J., Jordan, R., McMacken, R. & Gierasch, L. 1992 Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature, Lond. 355, 455–457.CrossRefGoogle Scholar
  25. Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M.K. & Hard, F.U. 1992 Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, Lond. 356, 683–689.CrossRefGoogle Scholar
  26. LeBowitz, J.H. & McMacken, R. 1986 The Escherichia coli DnaB replication protein is a DNA helicase. J. biol. Chem. 261, 4738–4748.PubMedGoogle Scholar
  27. Liberek, K., Georgopoulos, C. & Zylicz, M. 1988 Role of Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage λDNA replication. Proc. natn. Acad. Sci. U.S.A. 85, 6632–6636.CrossRefGoogle Scholar
  28. Liberek, K., Osipiuk, J., Zylicz, M., Ang, D., Skorko, J. & Georgopoulos, C. 1990 Physical interactions between bacteriophage λ and Escherichia coli proteins required for initiation of λDNA replication. J. biol. Chem. 265, 3022–3029.PubMedGoogle Scholar
  29. Liberek, K., Skowyra, D., Zylicz, M., Johnson, C. & Georgopoulos, C. 1991a The Escherichia coli DnaK chaperone, the 70-kDa heat shock protein eukaryotic equivalent, changes conformation upon ATP hydrolysis, thus triggering its dissociation from bound target protein. J. biol. Chem. 266, 14491–14496.PubMedGoogle Scholar
  30. Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. 1991b Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. natn. Acad. Sa. U.S.A. 88, 2874–2878.CrossRefGoogle Scholar
  31. McMacken, R., Mensa-Wilmot, K, Alfano, C., Seaby, R., Carroll, K, Gomes, B. & Stephenes, K. 1988 Reconstitution of purified protein system for the initiation and regulation of bacteriophage λDNA replication. Cancer Cells 6, 25–34.Google Scholar
  32. Mensa-Wilmot, K, Seaby, R., Alfano, C., Wold, M.S., Gomes, B. & McMacken, R. 1989 Reconstitution of a nine-protein system that initiates bacteriophage λDNA replication. J. biol. Chem. 264, 2853–2861.PubMedGoogle Scholar
  33. Osipiuk, J., Georgopoulos, C. & Zylicz, M. 1993 Initiation of λDNA replication. J. biol. Chem. 268. (In the press.)Google Scholar
  34. Palleros, D., Reid, K.L., McCarty, J.S., Walker, G.C. & Fink, A.L. 1992 DnaK, hsp70, and their molten globules. J. biol. Chem. 267, 5279–5285.PubMedGoogle Scholar
  35. Pelham, H.R.B. 1988 Heat shock proteins. Coming in from the cold. Nature, Lond. 332, 776–777.CrossRefGoogle Scholar
  36. Rothman, J.E. 1989 Peptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59, 591–601.PubMedCrossRefGoogle Scholar
  37. Sakakibara, Y. 1988 The dnaK gene of Escherichia coli functions in initiation of chromosome replication. J. Bad. 170, 972–979.Google Scholar
  38. Schnos, M., Zahn, K, Inman, R.B. & Blattner, F.R. 1988 Initiation protein induced helix destabilization at the λ origin: a prepriming step in DNA replication. Cell 52, 385–395.PubMedCrossRefGoogle Scholar
  39. Skowyra, D., Georgopoulos, C. & Zylicz, M. 1990 The E. coli dnaK gene product, the hsp 70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62, 939–944.PubMedCrossRefGoogle Scholar
  40. Wada, M. & Itikawa, H. 1984 Participation of Escherichia coli K-12 groE gene products in the synthesis of Cellular DNA and RNA. J. Bad. 157, 694–696.Google Scholar
  41. Wickner, S. 1978 DNA replication proteins of Escherichia coli and phage λ. Cold Spring Harb. Symp. quant. Biol. 43, 303–310.CrossRefGoogle Scholar
  42. Wickner, S., Hoskins, J. & McKenney, K. 1991 Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by Rep A. Nature, Lond. 350, 165–167.CrossRefGoogle Scholar
  43. Wickner, S., Hoskins, J. & McKenney, K. 1991 Monomerization of RepA dimers by heat shock proteins activates binding to DNA replication origin. Proc. natn. Acad. Sci. U.S.A. 88, 7903–7907.CrossRefGoogle Scholar
  44. Wickner, S., Skowyra, D., Hoskins, J. & McKenney, K. 1992 DnaJ, DnaK, GrpE heat shock proteins are required in oriP1 DNA replication solely for the RepA monomerization step. Proc. natn. Acad. Sci. U.S.A. 89, 10345–10349.CrossRefGoogle Scholar
  45. Wild, J., Komath-Loeb, A., Ziegelhoffer, E., Lonetto, M., Kawasaki, Y. & Gross, C.A. 1992 Partial loss of function mutations in DnaK, the E. coli homologue of the hsp70 kDa heat shock protein, affect highly conserved amino acids implicated in ATP binding and hydrolysis. Proc. natn. Acad. Sci. U.S.A. 89, 7139–7143.CrossRefGoogle Scholar
  46. Zylicz, M. & Georgopoulos, C. 1984 Purification and properties of the Escherichia coli DnaK replication protein. J. biol. Chem. 259, 8820–8825.PubMedGoogle Scholar
  47. Zylicz, M., Ang, D. & Georgopoulos, C. 1987 The GrpE protein of Escherichia coli: purification and properties. J. biol. Chem. 262, 17437–17442.PubMedGoogle Scholar
  48. Zylicz, M., Ang, D., Liberek, K. & Georgopoulos, C. 1989 Initiation of λDNA replication with purified host- and bacteriophage-encoded proteins: The role of the DnaK, DnaJ and grpE heat shock proteins. EMBO J. 8, 1601–1608.PubMedGoogle Scholar
  49. Zylicz, M., Gorska, I., Taylor, K. & Georgopoulos, C. 1984 Bacteriophage λ replication proteins: formation of a mixed oligomer and binding to origin of DNA. Molec. gen. Genet. 196, 401–406.PubMedCrossRefGoogle Scholar
  50. Zylicz, M., LeBowitz, J.H., McMacken, R. & Georgopoulos, C. 1983 The DnaK protein of Escherichia coli possesses an ATPase and autophosphorylating activity and is essential in an in vitro DNA replication system. Proc. natn. Acad. Sci. U.S.A. 80, 6431–6435.CrossRefGoogle Scholar
  51. Zylicz, M., Yamamoto, T., McKittrick, N., Sell, S. & Georgopoulos, C. 1985 Purification and properties of DnaJ replication protein of Escherichia coli. J. biol. Chem. 260, 7591–7598.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations