Advertisement

Molecular chaperones and the immune response

Chapter

Summary

Molecular chaperones belonging to heat shock protein families have been identified as prominent antigens in the immune response to a wide variety of infections. Recognition of such highly conserved antigens may contribute to protective immunity but, in some circumstances, may also have pathological autoimmune consequences. Recognition of chaperones may be an inherent feature of the immune system. Peptide mapping experiments revealed an overlap between hsp 70-binding sites and immunodominant regions of three protein antigens, consistent with a possible functional activity for molecular chaperones in the processing and presentation of peptides during class II-restricted T lymphocyte responses. A functional role for molecular chaperones in antigen processing may be a factor which contributes to their immunogenicity.

Keywords

Heat Shock Protein Molecular Chaperone Peptide Binding Protein Antigen Antigen Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjorkman, P.J., Saper, M.A., Samraoui, B., Bennett, W.S., Strominger, J.L. & Wiley, D.C. 1987 Structure of the human class I histocompatibility antigen, HLA-A2. Nature, Lond. 329, 506–512.CrossRefGoogle Scholar
  2. Born, W., Hall, L., Dallas, A., et al. 1990a Recognition of a peptide antigen by heat shock-reactive γδ T lymphocytes. Science, Wash. 249, 67-69.CrossRefGoogle Scholar
  3. Born, W., Happ, M.P., Dallas, A., et al. 1990b Recognition of heat shock proteins and γδ cell function. Immunol. Today 11, 40–43.PubMedCrossRefGoogle Scholar
  4. Born, W., Vollmer, M., Fu, Y.-X., et al. 1993 Response of γδ T cell hybridomas to peptides of seven amino acids. (Submitted.)Google Scholar
  5. Brenner, M.B., Strominger, J.L. & Krangel, M.S. 1988 The γδ T cell receptor. Adv. Immunol. 43, 133–192.PubMedCrossRefGoogle Scholar
  6. Brown, J.H., Jardetsky, T., Saper, M.A., Samraoui, B., Bjorkman, P.J. & Wiley, D.C. 1988 A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature, Lond. 332, 845–850.CrossRefGoogle Scholar
  7. Chiang, H.L., Terlecky, S.R., Plant, C.P. & Dice, J.F. 1989 A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science, Wash. 24, 382–385.CrossRefGoogle Scholar
  8. Cohen, I.R. 1991 Autoimmunity to chaperonins in the pathogenesis of arthritis and diabetes. A. Rev. Immunol. 9, 567-589.CrossRefGoogle Scholar
  9. Cohen, I.R. & Young, D.B. 1991 Autoimmunity, microbial immunity and the immunological homuniculus. Immunol. Today 12, 105–110.PubMedCrossRefGoogle Scholar
  10. De Graeff-Meeder, E.R., Van der Zee, R., Rijkes, C.T. et al. 1991 Recognition of human 60 kD heat shock protein by mononuclear cells from patients with juvenile chronic arthritis. Lancet 337, 1368–1372.PubMedCrossRefGoogle Scholar
  11. De Nagel, D.C. & Pierce, S.K. 1992 A case for chaperones in antigen processing. Immunol. Today. 13, 86–89.CrossRefGoogle Scholar
  12. Deverson, E.V., Gow, I.R., Coadwell, W.J., Monaco, J.J., Butcher, G.W. & Howard, J.C. 1990 MHC class II region genes encoding proteins related to the multidrug resistance family of transmembrane transporters. Nature, Lond. 348, 738–741.CrossRefGoogle Scholar
  13. Elsaghier, A.A.F., Wilkins, E.G.L., Mehrotra, P.K., Jindal, S. & Ivanyi, J. 1991 Elevated antibody levels to stress protein hsp 70 in smear-negative tuberculosis. Immunol, infect. Dis. 1, 323–328.Google Scholar
  14. Faith, A., Moreno, C., Lathigra, R. et al. 1991 Analysis of human T-cell epitopes in the 19,000 MW antigen of Mycobacterium tuberculosis: influence of HLA-DR. Immunology 74, 1–7.PubMedGoogle Scholar
  15. Fischer, H.P., Sharrock, C.E.M. & Panayi, G.S. 1992 High frequency of cord blood lymphocytes against mycobacterial 65-kDa heat-shock protein. J. Immunol. 22, 1667-1669.Google Scholar
  16. Flajnik, M.F., Canel, C., Kramer, J. & Kasahara, M. 1991 Which came first, MHC class I or class II? Immunogenetics 33, 295–300.PubMedCrossRefGoogle Scholar
  17. Flynn, G.C., Pohl, J., Flocco, M.T. & Rothman, J.E. 1991 Peptide binding specificity of the molecular chaperone BiP. Nature, Lond. 353, 726–730.CrossRefGoogle Scholar
  18. Germain, R.N. 1986 The ins and outs of antigen processing and presentation. Nature, Lond. 322, 687-689.CrossRefGoogle Scholar
  19. Goldberg, A.L. & Rock, K.L. 1992 Proteolysis, proteasomes and antigen presentation. Nature, Lond. 357, 375–379.CrossRefGoogle Scholar
  20. Haregewoin, A., Singh, B., Gupta, R.S. & Finberg, R.W. 1990 A mycobacterial heat shock protein responsive γδ T cell clone also responds to the homologous human heat shock protein: a possible link between infection and autoimmunity. J. infect. Dis. 163, 156–159.CrossRefGoogle Scholar
  21. Harris, D.P., Vordermeier, H.M., Friscia, G. et al. 1993 Adjacent topography of genetically permissive, immunodominant epitopes of the 19 kDa antigen of Mycobacterium tuberculosis recognised by human and murine T cells. (Submitted.)Google Scholar
  22. Harris, D.P., Vordermeier, H.M., Roman, E. et al. 1991 Murine T cell stimulatory peptides from the 19-kDa antigen of Mycobacterium tuberculosis. J. Immunol. 147, 2706–2712.PubMedGoogle Scholar
  23. Hiromatsu, K., Yoshikai, Y., Matsuzaki, G. et al. 1992 A protective role for γδ T cells in primary infection with Listeria monocytogenes in mice. J. exp. Med. 175, 49–56.PubMedCrossRefGoogle Scholar
  24. Jardetsky, T.S., Lane, W.S., Robinson, R.A., Madden, D.R. & Wiley, D.C. 1991 Identification of self peptides bound to purified HLA-B27. Nature, Lond. 353, 326–329.CrossRefGoogle Scholar
  25. Kaufmann, S.H.E., Vath, U., Thole, J.E.R., Van Embden, J.D.A. & Emmrich, F. 1987 Enumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the 64-kDa protein. Eur. J. Immunol. 17, 351–357.PubMedCrossRefGoogle Scholar
  26. Koga, T., Wand-Wurttenberger, A., de Bruyn, J., Munk, M.E., Schoel, B. & Kaufmann, S.H.E. 1989 T cells against a bacterial heat shock protein recognize stressed macrophages. Science, Wash. 246, 1112–1115.CrossRefGoogle Scholar
  27. Lakey, E.K., Margoliash, E. & Pierce, S.K. 1987 Identification of a peptide binding protein that plays a role in antigen presentation. Proc. natn. Acad. Sci. U.S.A. 84, 1659–1663.CrossRefGoogle Scholar
  28. Lamb, J.R., Bal, V., Mendez-Samperio, P. et al. 1989 Stress proteins may provide a link between the immune response to infection and autoimmunity. Int. Immunol. 1, 191–196.PubMedCrossRefGoogle Scholar
  29. McKenzie, K.R., Adams, E., Britton, W.J., Garsia, R.J. & Basten, A. 1991 Sequence and immunogenicity of the 70-kDa heat shock protein of Mycobacterium leprae. J. Immunol. 60, 1170–1177.Google Scholar
  30. Mehra, V., Bloom, B.R., Bajardi, A.C. et al. 1992 A major T cell antigen of Mycobacterium leprae is a 10-kD heat-shock cognate protein. J. exp. Med. 175, 275–284.PubMedCrossRefGoogle Scholar
  31. Modlin, R.L., Pirmez, C., Hofman, F.M. et al. 1989 Lymphocytes bearing antigen-specific γδ T-cell receptors accumulate in human infectious disease lesions. Nature, Lond. 339, 544–548.CrossRefGoogle Scholar
  32. Morimoto, R.I., Tissieres, A. & Georgopoulos, C. (eds) 1990 Stress proteins in biology and medicine. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  33. Munk, M.E., Schoel, B., Modrow, S., Karr, R.W., Young, R.A. & Kaufmann, S.H.E. 1989 Cytolytic T lymphocytes from healthy individuals with specificity for self epitopes shared by the mycobacterial and human 65 kDa heat shock protein. J. Immunol. 143, 2844–2849.PubMedGoogle Scholar
  34. Nelson, C.A., Roof, R.W., McCourt, D.W. & Unanue, E.R. 1992 Identification of the naturally processed form of hen egg white lysozyme bound to the murine major histocompatibility complex class II molecule I-Ak. Proc. natn. Acad. Sci. U.S.A. 89, 7380–7383.CrossRefGoogle Scholar
  35. O’Brien, R.L., Happ, M.L., Dallas, A., Palmer, E., Kubo, R. & Born, W.K. 1989 Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen derived from Mycobacterium tuberculosis. Cell 57, 667-674.PubMedCrossRefGoogle Scholar
  36. O’Brien, R.L., Fu, Y.-X., Cranfill, R. et al. 1992 Hsp 60-reactive γδ cells: a large, diversified T lymphocyte subset with highly focused specificity. Proc. natn. Acad. Sci. U.S.A. 89, 4348–4352.CrossRefGoogle Scholar
  37. Roman, E., Moreno, C. & Young, D. 1993 Mapping of hsp 70 binding sites on protein antigens. (Submitted.)Google Scholar
  38. Rotzschke, O., Falk, K., Deres, K. et al. 1990 Isolation and analysis of naturally processed viral peptides recognized by cytotoxic T cells. Nature, Lond. 348, 253–255.CrossRefGoogle Scholar
  39. Rudensky, A.Y., Preston-Hurlburt, P., Hong, S.-C., Barlow, A. & Janeway, C.A. 1991 Sequence analysis of peptides bound to MHC class II molecules. Nature, Lond. 353, 622–627.CrossRefGoogle Scholar
  40. Sargent, C.A., Dunham, I., Trowsdale, J. & Campbell, R.D. 1989 Human major histocompatibility complex contains genes for the major heat shock protein hsp 70. Proc. natn. Acad. Sci. U.S.A. 86, 1986–1972.CrossRefGoogle Scholar
  41. Townsend, A., Bastin, J., Gould, K. et al. 1988 Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen. J. exp. Med. 168, 1211–1224.PubMedCrossRefGoogle Scholar
  42. Trowsdale, J., Hanson, I., Mockridge, I., Beck, S., Townsend, A. & Kelly, A. 1990 Sequences encoded in the class II region of the MHC related to the ‘ABC’ superfamily of transporters. Nature, Lond. 348, 741–744.CrossRefGoogle Scholar
  43. Unanue, E.R. 1992 Cellular studies on antigen presentation by class II MHC molecules. Curr. Opin. Immunol. 4, 63–69.PubMedCrossRefGoogle Scholar
  44. Van Buskirk, A.M., De Nagel, D.C., Guagliardi, L.E., Brodsky, F.M. & Pierce, S.K. 1991 Cellular and subcellular distribution of PBP72/74, a peptide-binding protein that plays a role in antigen processing. J. Immunol. 146, 500–506.Google Scholar
  45. Vidard, L., Rock, K.L. & Benacerraf, B. 1992 Diversity in MHC class II ovalbumin T cell epitopes generated by distinct proteases. J. Immunol. 149, 498–504.PubMedGoogle Scholar
  46. Vordermeier, H.M., Harris, D.P., Lathigra, R., Roman, E., Moreno, C. & Ivanyi, J. 1993 Focusing of the murine T cell immune response after tuberculosis infection. Analysis of epitopes of the 16kDa antigen. (Submitted.)Google Scholar
  47. Vordermeier, H.M., Harris, D.P., Roman, E., Lathigra, R., Moreno, C. & Ivanyi, J. 1991 Identification of T cell stimulatory peptides from the 38-kDa protein of Mycobacterium tuberculosis. J. Immunol. 147, 1023–1029.Google Scholar
  48. Young, D.B., Mehlert, A. & Smith, D.F. 1990 Stress proteins and infectious diseases. In Stress proteins in biology and medicine (ed. R. I. Morimoto, A. Tissieres & C. Georgopoulos), pp. 131–165. New York: Cold Spring Harbor Laboratory Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations