The role of molecular chaperones in protein transport into the endoplasmic reticulum



In eukaryotic cells export of the vast majority of newly synthesized secretory proteins is initiated at the level of the membrane of the endoplasmic reticulum (microsomal membrane). The precursors of secretory proteins are not transported across the microsomal membrane in their native state. Typically, signal peptides in the precursor proteins are involved in preserving the transport-competent state. Furthermore, there are two alternatively acting mechanisms involved in preserving transport competence in the cytosol. The first mechanism involves two ribonucleoparticles (ribosome and signal recognition particle) and their receptors on the microsomal surface and requires the hydrolysis of GTP. The second mechanism does not involve ribonucleoparticles and their receptors but depends on the hydrolysis of ATP and on cis-acting molecular chaperones, such as heat shock cognate protein 70 (hsc 70). In both mechanisms a translocase in the microsomal membrane mediates protein translocation. This translocase includes a signal peptide receptor on the cis-side of the microsomal membrane and a component that also depends on the hydrolysis of ATP. At least in certain cases, an additional nucleoside triphosphate-requiring step is involved which is related to the trans-acting molecular chaperone BiP.


Molecular Chaperone Microsomal Membrane Signal Recognition Particle Membrane Insertion Rabbit Reticulocyte Lysate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaya, Y., Nakano, A., Ito, K. & Mori, M. 1990 Isolation of a yeat gene, SRH1, that encodes a homologue of the 54k subunit of mammalian signal recognition particle. J. Biochem. 107, 457–463.PubMedGoogle Scholar
  2. Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F.X. & Kiefhaber, T. 1991 GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586–1591.PubMedCrossRefGoogle Scholar
  3. Caplan, A J. & Douglas, M.G. 1991 Characterization of YDJ1: a yeast homologue of the bacterial DnaJ protein. J. Cell Biol. 114, 609–621.PubMedCrossRefGoogle Scholar
  4. Chirico, W.J., Waters, G.M. & Blobel, G. 1988 70K heat shock related proteins stimulate protein translocation into microsomes. Nature, Lond. 332, 805–810.CrossRefGoogle Scholar
  5. Connolly, T. & Gilmore, R. 1989 The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57, 599–610.PubMedCrossRefGoogle Scholar
  6. Connolly, T., Rapiejko, P.J. & Gilmore, R. 1991 Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science, Wash. 252, 1171–1173.CrossRefGoogle Scholar
  7. Courtneidge, S.A. & Bishop, J.M. 1982 Transit of pp60v-src to the plasma membrane. Proc. natn. Acad. Sci. U.S.A. 79, 7117–7121.CrossRefGoogle Scholar
  8. Dalman, F.C., Bresnick, E.H., Patel, P.D., Perdew, G.H., Watson Jr, S.J. & Pratt, W.B. 1989 Direct evidence that the glucocorticoid receptor binds to hsp 90 at or near the termination of receptor translation in vitro. J. biol. Chem. 264, 19815–19821.PubMedGoogle Scholar
  9. Deshaies, R.J. & Schekman, R. 1987 A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 105, 633–645.PubMedCrossRefGoogle Scholar
  10. Deshaies, R.J. & Schekman, R. 1989 Sec62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum. J. Cell Biol. 109, 2653–2664.PubMedCrossRefGoogle Scholar
  11. Deshaies, R.J., Koch, B.D., Werner-Washburne, M., Craig, E.A. & Schekman, R. 1988 A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature, Lond. 332, 800–805.CrossRefGoogle Scholar
  12. Ellis, R.J. & van der Vies, S.M. 1991 Molecular chaper-ones. A. Rev. Biochem. 60, 321–347.CrossRefGoogle Scholar
  13. Gao, Y., Thomas, J.O., Chow, R.L., Lee, G.-H. & Cowan, N.J. 1992 A cytoplasmic chaperonin that catalyzes β-actin folding. Cell 69, 1043–1050.PubMedCrossRefGoogle Scholar
  14. Hann, B.C., Poritz, M.A. & Walter, P. 1989 Saccharomyces cerevisiae and Schizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth. J. Cell Biol. 109, 3223–3235.PubMedCrossRefGoogle Scholar
  15. Hann, B.C., Stirling, C.J. & Walter, P. 1992 Sec65 gene product is a subunit of the yeast signal recognition particle required for its integrity. Nature, Lond. 356, 532–533.CrossRefGoogle Scholar
  16. Hann, B.C. & Walter, P. 1991 The signal recognition particle in S. cerevisiae. Cell 67, 131–144.PubMedCrossRefGoogle Scholar
  17. Klappa, P., Mayinger, P., Pipkorn, R., Zimmermann, M. & Zimmermann, R. 1991 A microsomal protein is involved in ATP-dependent transport of presecretory proteins into mammalian microsomes. EMBO J. 10, 2795–2803.PubMedGoogle Scholar
  18. Klappa, P., Zimmermann, M., Dierks, T. & Zimmermann, R. 1992 Components and mechanisms involved in the transport of proteins into the endoplasmic reticulum. Subcell. Biochem. (In the press.)Google Scholar
  19. Lauffer, L., Garcia, P.D., Harkins, R.N., Coussens, L., Ullrich, A. & Walter, P. 1985 Topology of signal recognition particle receptor in the endoplasmic reticulum membrane. Nature, Lond. 318, 334–338.CrossRefGoogle Scholar
  20. Lewis, V.A., Hynes, G.M., Zheng, D., Saibil, H. & Willison, K. 1992 T complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature, Lond. 358, 249–252.CrossRefGoogle Scholar
  21. Lütcke, H., High, S., Römisch, K., Ashford, A.J. & Dobberstein, B. 1992 The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO J. 11, 1543–1551.PubMedGoogle Scholar
  22. Luke, M.M., Sutton, A. & Arndt, K.T. 1991 Characterization of SIS1, a Saccharomyces cerevisiae homologue of bacterial DnaJ proteins. J. Cell Biol. 114, 623–638.PubMedCrossRefGoogle Scholar
  23. Meyer, D.I. & Dobberstein, B. 1980a A membrane component essential for vectorial translocation of nascent proteins across the endoplasmic reticulum: Requirements for its extraction and reassociation with the membrane. J. Cell Biol. 87, 498–502.PubMedCrossRefGoogle Scholar
  24. Meyer, D.I. & Dobberstein, B. 1980b Identification and characterization of a membrane component essential for the translocation of nascent proteins across the membrane of the endoplasmic reticulum. J. Cell Biol. 87, 503–508.PubMedCrossRefGoogle Scholar
  25. Nicchitta, C.V. & Blobel, G. 1990 Assembly of translocation competent proteoliposomes from detergent-solubilized rough microsomes. Cell 60, 259–266.PubMedCrossRefGoogle Scholar
  26. Nicchitta, C.V., Migliaccio, G. & Blobel, G. 1991 Biochemical fractionation and assembly of the membrane components that mediate nascent chain targeting and translocation. Cell 65, 587–598.PubMedCrossRefGoogle Scholar
  27. Nguyen, T.H., Law, D.T.S. & Williams, D.B. 1991 Binding protein BiP is required for translocation of secretory proteins into the endoplasmic reticulum in Saccharomyces cerevisiae. Proc. natn. Acad. Sci. U.S.A. 88, 1565–1569.CrossRefGoogle Scholar
  28. Perara, E., Rothman, R.E. & Lingappa, V.R. 1986 Uncoupling translocation from translation: implications for transport of proteins across membranes. Science, Wash. 232, 348–352.CrossRefGoogle Scholar
  29. Poritz, M.A., Siegel, V., Hansen, W. & Walter, P. 1988 Small ribonucleoproteins in Schizosaccharomyces pombe and Yarrowia lipolytica homologous to signal recognition particle. Proc. natn. Acad. Sci. U.S.A. 85, 4315–4319.CrossRefGoogle Scholar
  30. Rapiejko, P.J. & Gilmore, R. 1992 Protein translocation across the ER requires a functional GTP binding site in the α subunit of the signal recognition particle receptor. J. Cell Biol. 117, 493–503.PubMedCrossRefGoogle Scholar
  31. Ribes, V., Dehaux, P. & Tollervey, D. 1988 7SL RNA from Schizosaccharomyces pombe is encoded by a single copy essential gene. EMBO J. 7, 231–237.PubMedGoogle Scholar
  32. Römisch, K., Webb, J., Lingelbach, K., Gausepohl, H. & Dobberstein, B. 1990 The 54-kD protein of signal recognition particle contains a methionine-rich RNA binding domain. J. Cell Biol. 111, 1793–1802.PubMedCrossRefGoogle Scholar
  33. Sadler, I., Chiang, A., Kurihara, T., Rothblatt, J., Way, J. & Silver, P. 1989 A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. J. Cell Biol. 109, 2665–2675.PubMedCrossRefGoogle Scholar
  34. Sanders, S.L., Whitfield, K.M., Vogel, J.P., Rose, M.D. & Schekman, R. 1992 Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69, 353–365.PubMedCrossRefGoogle Scholar
  35. Schlenstedt, G., Gudmundsson, G.H., Boman, H.G. & Zimmermann 1990 A large presecretory protein translocates both cotranslationally, using signal recognition particle and ribosome, and posttranslationally, without these ribonucleoparticles, when synthesized in the presence of mammalian microsomes. J. biol. Chem. 265, 13960–13968.PubMedGoogle Scholar
  36. Stirling, C.J. & Hewitt, E.W. 1992 The S. cerevisiae Sec65 gene encodes a component of yeast signal recognition particle with homology to human SRP19. Nature, Lond. 356, 534–537.CrossRefGoogle Scholar
  37. Tajima, S., Lauffer, L., Rath, V.L. & Walter, P. 1986 The signal recognition particle receptor is a complex that contains two distinct polypeptide chains. J. Cell Biol. 103, 1167–1178.PubMedCrossRefGoogle Scholar
  38. Toyn, J., Hibbs, A.R., Sanz, P., Crowe, J. & Meyer, D.I. 1988 In vivo and in vitro analysis of ptll, a yeast ts mutant with a membrane associated defect in protein translocation. EMBO J. 7, 4347–4353.PubMedGoogle Scholar
  39. Vogel, J.P., Misra, L.M. & Rose, M.D. 1990 Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J. Cell Biol. 110, 1885–1895.PubMedCrossRefGoogle Scholar
  40. Walter, P. & Blobel, G. 1981a Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein, SRP, mediates the selective binding to microsomal membranes of in vitro-assembled polysomes synthesizing secretory protein. J. Cell Biol. 91, 551–556.PubMedCrossRefGoogle Scholar
  41. Walter, P. & Blobel, G. 1981b Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein, SRP, causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 91, 557–561.PubMedCrossRefGoogle Scholar
  42. Wiech, H., Buchner, J., Zimmermann, R. & Jakob, U. 1992 Hsp 90 chaperones protein folding in vitro. Nature, Lond. 358, 169–170.CrossRefGoogle Scholar
  43. Wiech, H., Buchner, J., Zimmermann, M., Zimmermann, R. & Jakob, U. 1993 Hsc 70, BiP and Hsp 90 differ in their ability to stimulate transport of precursor proteins into mammalian microsomes. J. biol. Chem. (In the press.)Google Scholar
  44. Wiech, H., Klappa, P. & Zimmermann, R. 1991 Protein export in prokaryotes and eukaryotes. FEBS Lett. 285, 182–188.PubMedCrossRefGoogle Scholar
  45. Wiech, H., Sagstetter, M., Müller, G. & Zimmermann, R. 1987 The ATP requiring step in assembly of M13 procoat protein into microsomes is related to preservation of transport competence of the precursor protein. EMBO J. 6, 1011–1016.PubMedGoogle Scholar
  46. Wiech, H., Stuart, R. & Zimmermann, R. 1990 Role of cytosolic factors in the transport of proteins across membranes. Semin. Cell Biology 1, 55–63.Google Scholar
  47. Yaffe, M.B., Farr, G.W., Miklos, D., Horwich, A.L., Sternlicht, M.L. & Sternlicht, H. 1992 TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature, Lond. 358, 245–248.CrossRefGoogle Scholar
  48. Yu, Y., Zhang, Y., Sabatini, D.D. & Kreibich, G. 1989 Reconstitution of translocation-competent vesicles from detergent-solubilized dog pancreas microsomes. Proc. natn. Acad. Sci. U.S.A. 86, 9931–9935.CrossRefGoogle Scholar
  49. Zimmerman, D.L. & Walter, P. 1990 Reconstitution of protein translocation activity from partially solubilized microsomal vesicles. J. biol. Chem. 265, 4048–4053.PubMedGoogle Scholar
  50. Zimmermann, R., Sagstetter, M., Lewis, M.J. & Pelham, H.R.B. 1988 Seventy kilodalton heat shock proteins and an additional component from reticulocyte lysate stimulate import of M13 procoat protein into microsomes. EMBO J. 7, 2875–2880.PubMedGoogle Scholar
  51. Zopf, D., Bernstein, H.D., Johnson, A.E. & Walter, P. 1990 The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511–4517.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations