Skip to main content

Scattering and Inverse Scattering

  • Chapter
A Course on Nonlinear Waves

Part of the book series: Nonlinear Topics in the Mathematical Sciences ((NTMS,volume 3))

  • 539 Accesses

Abstract

For a given potential, the scattering method has been commonly used to find the wave functions in quantum mechanics. An inverse process of this scattering is to find the potential from known scattering data. Such a process is called the inverse scattering method. If the potential satisfies a nonlinear evolution equation (the differential equation u t = E[u], where E is a nonlinear time independent operator), sometimes there exists a linear operator whose potential is u(x,t) such that the spectrum of the linear operator is independent of time t. Hence the inverse scattering method can generate solutions to the nonlinear evolution equation by solving linear problems. This remarkable method that solves nonlinear evolution equations was invented by Kruskal, Greene, Gardner and Miura (1967), and it was first applied to find soliton solutions of an initial value problem for the Korteweg-de Vries equation. Later it was applied to other nonlinear evolution equations, such as the cubic-nonlinear Schrödinger equation, the sine-Gordon equation, the Ginzburg-Landau equation, and the Yang-Mills equations, etc. Many historical papers on this aspect can be found in the book edited by (1984) which is a collection of reprints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura (1974), Korteweg-de Vries equation and generalizations. VI. Methods for exact solution, Comm. Pure Appl. Math. 27, 97–133.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. L. Lamb (1980), Elements of Soliton Theory, John Wiley, New York.

    MATH  Google Scholar 

  3. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris (1982), Solitons and Nonlinear Wave Equations, Academic Press, New York.

    MATH  Google Scholar 

  4. R. M. Miura (1976), The Korteweg-de Vries equation: A survey of results, SIAM Review 18, 412–459.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. D. Lax (1968), Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, 467–490.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Landau and E. Lifschitz (1958), Quantum Mechanics, Nonrelativistic Theory, Pergamon Press, New York.

    Google Scholar 

  7. R. S. Johnson (1973), On the development of a solitary wave moving over an uneven bottom, Proc. Camb. Phil. Soc. 73, 183–203.

    Article  MATH  Google Scholar 

  8. I. M. Gel’f and and B. M. Levitan (1955), On the determination of a differential equation from its spectral function, Amer. Math. Soc. Transi. Ser. 2, 253–304.

    Google Scholar 

  9. C. Rebbi and G. Soliani (1984), Solitons and Particles, World Scientific Publishing Co., Singapore.

    Book  MATH  Google Scholar 

  10. P. G. Drazin and R. S. Johnson (1989), Solitons: An Introduction, Cambridge University Press.

    Google Scholar 

  11. P. G. Drazin (1983), Solitons, Cambridge University Press.

    Google Scholar 

  12. J. L. Hammack and H. Segur (1974), The Korteweg-de Vries equation and water waves, Part 2. Comparison with experiments, J. Fluid Mech. 65, 289–314.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. C. Newell (1985), Solitons in Mathematics and Physics, SIAM, Philadelphia, Pennsylvania.

    Book  Google Scholar 

  14. N. J. Zabusky and M. D. Kruskal (1965), Interaction of “solitons” in a collisionless plasma and the recurrence of the initial states, Phys. Rev. Lett., 15, 240–243.

    Article  MATH  Google Scholar 

  15. H. D. Wahlquist and F. B. Estabrook (1973), Bäcklund transformation from solitons of the Korteweg-de Vries equation, Phys. Rev. Lett. 31, 1386–1390.

    Article  MathSciNet  Google Scholar 

  16. H. H. Chen (1974), General derivation of Bäcklund transformations from inverse scattering problems, Phys. Rev. Lett. 33, 925–928.

    Article  MathSciNet  Google Scholar 

  17. M. J. Ablowitz and H. Segur (1981), Solitons and Inverse Scattering Transform, SIAM, Philadelphia, Pennsylvania.

    Book  MATH  Google Scholar 

  18. T. Kuusela, J. Hietarinta, K. Kokko and R. Laiho (1987), Soliton experiments in a nonlinear electrical transmission line, Eur. J. Phys. 8, 27–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shen, S.S. (1993). Scattering and Inverse Scattering. In: A Course on Nonlinear Waves. Nonlinear Topics in the Mathematical Sciences, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2102-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2102-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4932-0

  • Online ISBN: 978-94-011-2102-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics