Skip to main content

Wavelet Analysis of Fractal Signals Application to Fully Developed Turbulence Data

  • Chapter

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 21))

Abstract

The recently developed multifractal formalism1 has proven particularly fruitful in the characterization of singular measures arising in a variety of physical situations2. Notable examples include the invariant probability distribution on a strange attractor, the dis tribution of voltage drops across a random resistor network, the distribution of growth probabilities on the boundary of a diffusion limited aggregate and the spatial distribution of dissipative regions in a turbulent flow. This formalism1 accounts for the statistical scaling properties of these measures through the determination of their singularity spectrum f(α) or their generalized fractal dimensions D q . The f(α) singularity spectrum provides a rather intuitive description of a multifractal measure in terms of interwoven sets of Hausdorff dimension f(α) corresponding to singularity strength α. This spectrum was shown to be intimately related, by means of a Legendre transform, to τ(q) = (q − 1)D q . Actually, the concept of multifractal originated from a general class of multiplicative cascade models introduced by Mandelbrot3a to account for the intermittent nature of the rate of turbulent energy dissipation. Along this line, measurements of the f(α) spectrum based on the local dissipation have been recently reported4 ; these experimental results bring conspicuous evidence for the multifractal nature of the dissipation field. An alternative description of the fine structures in fully developed turbulence consists in working exclusively with inertial range quantitities as proposed by Parisi and Frisch5. Basically their multifractal approach relies on the determination of the spectrum D(h) of Hölder exponents h of the velocity field from the inertial scaling properties of structure functions of variable order: S p () =< (δvℓ)p >~ ζp , (p integer > 0), where δv is a longitudinal velocity increment over a distance .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B.I. Shraiman, Phys.Rev. A 33, 1141 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  2. Essays in honour of B.B. Mandelbrot, Fractals in Physics, edited by A. Aharony and J. Feder, Physica 38 D (1989).

    Google Scholar 

  3. B.B. Mandelbrot, J. Fluid Mech. 62, 331 (1974)

    Article  MATH  Google Scholar 

  4. B.B. Mandelbrot, C.R. Acad. Sci. Paris 260, 3274 (1965);

    MathSciNet  MATH  Google Scholar 

  5. B.B. Mandelbrot, Pure Appl. Geophys. 131, 5 (1989).

    Article  Google Scholar 

  6. C. Meneveau and K.R. Sreenivasan, J. Fluid Mech. 224, 429 (1991).

    Article  MATH  Google Scholar 

  7. G. Parisi and U. Frisch, in Turbulence and Predictability in Geophysical Fluid Dy namics and Climate Dynamics, edited by M. Ghil, R. Benzi and G. Parisi (North-Holland, Amsterdam, 1984) p. 84.

    Google Scholar 

  8. Wavelets, edited by J.M. Combes, A. Grossman and P. Tchamitchian (Springer-Verlag, Berlin, 1989);

    MATH  Google Scholar 

  9. Y. Meyer, Ondelettes (Herman, Paris, 1990)

    Google Scholar 

  10. Les Ondelettes en 1989, edited by P.G. Lemarié (Springer-Verlag, Berlin, 1990).

    MATH  Google Scholar 

  11. A. Arneodo, G. Grasseau and M. Holschneider, Phys. Rev. Lett. 61, 2281 (1988);

    Article  MathSciNet  Google Scholar 

  12. A. Arneodo, F. Argoul, J. Elezgaray and G. Grasseau, in Nonlinear Dynamics, edited by G. Turchetti (World Scientific, Singapore, 1988) p. 130.

    Google Scholar 

  13. J.F. Muzy, E. Bacry and A. Arneodo, Phys. Rev. Lett. 67, 3515 (1991)

    Article  Google Scholar 

  14. A. Arneodo, E. Bacry and J.F. Muzy, Wavelets and Turbulence (Springer, Berlin, 1992) to appear.

    Google Scholar 

  15. E. Bacry, J.F. Muzy and A. Arneodo, J. Stat. Phys. 70 (1992) to appear.

    Google Scholar 

  16. J.F. Muzy, E. Bacry and A. Arneodo, “Multifractal formalism for fractal signals. The structure function method versus the wavelet transform modulus maxima method”, preprint (1992).

    Google Scholar 

  17. S. Jaffard, C.R. Acad. Sci. Paris 308, 79 (1989)

    MathSciNet  MATH  Google Scholar 

  18. M. Holschneider and P.Tchamitchian, in Ref. 6c, p. 102.

    Google Scholar 

  19. F. Argoul, A. Arneodo, G. Grasseau, Y. Gagne, E.J. Hopfinger and U. Frisch, Nature 338, 51 (1989);

    Article  Google Scholar 

  20. E. Bacry, A. Arneodo, U. Frisch, Y. Gagne and E.J. Hopfinger, in Turbulence and Coherent Structures, edited by O. Metais and M. Lesieur (Kluwer, Dordrecht, 1991) p. 203.

    Google Scholar 

  21. M. Vergassola and U. Frisch, Physica 54 D, 58 (1991).

    MathSciNet  MATH  Google Scholar 

  22. S. Mallat and W.L. Hwang, I.E.E.E. Trans. on Inf. Th. 38, 617 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Gagne, Thesis, University of Grenoble (1987)

    Google Scholar 

  24. B. Castaing, Y. Gagne and E.J.Hopfinger, Physica 46 D, 177 (1990).

    MATH  Google Scholar 

  25. A.N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  26. U. Frisch and S. Orszag, “Turbulence: Challenges for Theory and Experiments”, Physics Today (1990), p. 24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arneodo, A., Bacry, E., Muzy, J.F. (1993). Wavelet Analysis of Fractal Signals Application to Fully Developed Turbulence Data. In: Bonnet, J.P., Glauser, M.N. (eds) Eddy Structure Identification in Free Turbulent Shear Flows. Fluid Mechanics and Its Applications, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2098-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2098-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4930-6

  • Online ISBN: 978-94-011-2098-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics