Skip to main content

Sound Scattering from Microbubble Distributions Near the Sea Surface

  • Chapter
Ocean Reverberation

Abstract

Backscatter from the sea surface is thought to be governed by the roughness of the surface and subsurface bubble distributions. At low frequencies, due to the paucity of large bubbles, scattering results primarily from coherent and/or collective scatter from bubbles entrained by the subsurface vorticity or carried to depth by the Langmuir circulation and thermal convection. It is shown that scattering from compact regions is a function of the volume fraction of air and to first order can be described by a Minnaert formula modified with the volume fraction. Measurement of sound scattering from a submerged cloud of bubbles produces low-frequency peaks with large low-frequency target strength consistent with this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thorpe, S. A. (1982), “On the clouds of bubbles formed by breaking wind-waves in deep water and their role in air-sea gas transfer,” Phil. Trans, Roy. Soc. A 304, 155–185.

    Google Scholar 

  2. Su, M. Y., Green, A.W., and Bergin, N.T. (1984), “Experimental studies of surface wave breaking and air entrainment,” in W. Brutsaert and G. Jirka (eds.), Gas Transfer at Water Surfaces, Reidel Press, pp. 211–219.

    Google Scholar 

  3. Monahan, E. C. and MacNiocaill (eds.) (1986), Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, D. Reidel, Boston.

    Google Scholar 

  4. Monahan, E. C. and Lu, M. (1990), “Acoustically relevant bubble assemblages and their dependence on meteorological parameters,” IEEE Jour. Ocean Engr. 15 (4), 340–349.

    Article  Google Scholar 

  5. McDaniel, S. (1988), “High-frequency sea surface scattering: Recent Progress,” J. Acoust. Soc. Am 84(S1), S121 (also: ARL/PSU T.M. 88–134–21, July 1988 )

    Google Scholar 

  6. Carey, W., Goodman, R., McDaniel, S., Jackson, D., Deferrare, H., and Briscoe, M. (August 1985), “Sea surface scatter experiments, a review,” Memo to M. Orr, ONR (11250A).

    Google Scholar 

  7. McDonald, B. E. (1991), “Echoes from vertically striated subresonant bubble clouds: A model for ocean surface reverberation,” J. Acoust. Soc. Am 89 (2), 617–622.

    Article  Google Scholar 

  8. Henyey, F. (1991), “Acoustic scattering from ocean microbubble plumes in the 100 Hz to 2 kHz region,” J. Acoust. Soc. Am 90 (1), 399–405.

    Article  Google Scholar 

  9. Prosperetti, A. (1988), “Bubble related ambient noise in the ocean,” J. Acoust. Soc. Am. 84 (3), 1042–1054.

    Article  Google Scholar 

  10. Prosperetti, A. (1988), “Bubble dynamics in ocean ambient noise,” in B. R. Kerman (ed.), Sea Surface Sound, Kulwer Acad., Boston, MA, pp. 171–171.

    Google Scholar 

  11. Carey, W. M. and Browning, D. G. (1988), “Low frequency ocean ambient noise: Measurements and theory,” in B. R. Kerman (ed.), Sea Surface Sound, Kulwer Acad., Boston, MA.

    Google Scholar 

  12. Carey, W. M. and Fitzgerald, J. W. (1987), “Low frequency noise and bubble plume oscillations,” J. Acoustic soc. Am. 82(51), p. 362 (paper 001 ) (also available NUSC TD 8495, 24 February 1989; DTIC AD206537)

    Google Scholar 

  13. Carey, W. M. and Fitzgerald, J. W. (1987), “Low frequency noise and bubble plume oscillations,” J. Acoustic soc. Am. 82(51), p. 362 (paper 001 ) (also available NUSC TD 8495, 24 February 1989; DTIC AD206537)

    Google Scholar 

  14. Foldy, L. (1944), “Propagation of sound through a liquid containing bubbles,” paper, Columbia Univ. NRDC DIV 6.1. (Available DTIC).

    Google Scholar 

  15. Spitzer, L. (1943), “Acoustic properties of gas bubbles in a liquid,” paper, NRDC DIV 6.1, (available DTIC).

    Google Scholar 

  16. Foldy, L. (February 1945), “Multiple scattering of waves,” Phys. Rev. 67(300264) 107119.

    Google Scholar 

  17. Carstensen, E. L. and Foldy, L. (May 1947), “propagation of sound through a liquid containing bubbles,” J. Acous. Soc. 19 (3), 481–501.

    Article  Google Scholar 

  18. Morse, P. M. and Feshback, H. (1943), Methods of Theoretical Physics, Part I I, McGraw Hill Book Co., N.Y.

    Google Scholar 

  19. Morse, P. M. and Ingard, K. (1968), Theoretical Acoustics, McGraw Hill Book Co., N.Y., pp. 413–414.

    Google Scholar 

  20. Rschevkin, S. N. (1963), The Theory of Sound, Pergamon Press Ltd., N.Y.

    Google Scholar 

  21. Anderson, V. (1950), “Sound scattering from a fluid sphere,” J. Acous. Soc. Am. 22 (4), 426–431.

    Article  Google Scholar 

  22. Wood, A.B. (1932/1955), ATextbook of Sound, G. Bell and Sons Ltd., London, pp. 360–364.

    Google Scholar 

  23. Commander, K. and Prosperretti, A. (1989), “Linear pressure waves in bubbly liquids: Comparison between theory and experiments,” J. Acoust. Soc. Am. 85 (2), 732–746.

    Article  Google Scholar 

  24. Gilbert, K., Wang, L., and Goodman, R. (1991), “A stochastic model for scattering from near-surface oceanic bubble layers,” J. Acoust. Soc. Am. 90 (s4), 2301.

    Article  Google Scholar 

  25. Strasberg, M. (1956), “Gas Bubbles as Sources of Sound in Liquids,” J. Acoust. Soc. Am. 28 (1), 20–26.

    Article  Google Scholar 

  26. Crighton, D.G. and Williams, J.E. (1969), “Sound generation by turbulent two-phase flow,” J. Fluid Mech. 36, 585–603.

    Article  MATH  Google Scholar 

  27. Van Wijngaarden, L. (1958), “On the equation of motions for mixtures of liquid and gas bubbles,” J. Fluid Mech. 133 (P3), 465–474.

    Google Scholar 

  28. Karplus, H. B. (1958), “The velocity of sound in a liquid containing gas bubbles,” paper, Armour Research Foundation, University of Illinois, Proj. c00–248, TID-4500.

    Google Scholar 

  29. Ruggles, A. (1987), “The Propagation of Pressure Perturbations in Bubbly Air/Water Flows,” Ph.D. Thesis, Dept. of Mech. Eng., Rensselaer Polytechnic Institute, Troy, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carey, W.M., Roy, R.A. (1993). Sound Scattering from Microbubble Distributions Near the Sea Surface. In: Ellis, D.D., Preston, J.R., Urban, H.G. (eds) Ocean Reverberation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2078-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2078-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4922-1

  • Online ISBN: 978-94-011-2078-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics