Skip to main content

Zeckendorf Representations of Positive and Negative Integers by Pell Numbers

  • Chapter

Abstract

Zeckendorf’s Theorem [14] for Fibonacci numbers, which is also given in Lekkerkerker [12], is stated by Brown [1], [2] for an integer N > 0 and a sequence {un} (where u n = F n + 1, the (n + l)th Fibonacci number, n ≥ 1) as follows: Zeckendorf’s Theorem: Every positive integer N has one and only one representation in the form

$$ N = \sum\limits_{{i = 1}}^{\infty } {{\alpha_i}{u_i}} $$
(1.1)

where each α i is a binary digit (i.e., with value 0 or 1) and

$$ {\alpha_i}\;{\alpha_{{i + 1}}} = 0\;for\;i \geqslant 1. $$
(1.2)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, J. L. Jr. “Zeckendorf’s Theorem and Some Applications.” The Fibonacci Quarterly, Vol. 2.3(1964): pp. 163–168.

    MATH  Google Scholar 

  2. Brown, J. L. Jr. “A New Characterization of the Fibonacci Numbers.” The Fibonacci Quarterly, Vol. 3.1 (1965): pp. 1–8.

    MathSciNet  MATH  Google Scholar 

  3. Bunder, M.W. “Zeckendorf Representations Using Negative Fibonacci Numbers.” The Fibonacci Quarterly, Vol. 30.2 (1992): pp. 111–115.

    MathSciNet  MATH  Google Scholar 

  4. Carlitz, L., Scovilb, R. and Hoggatt, V. E. Jr. “Pellian Representations.” The Fibonacci Quarterly, Vol. 10.5 (1972): pp. 449–488.

    MathSciNet  MATH  Google Scholar 

  5. Daykin, D.E. “Representations of Natural Numbers as Sums of Generalized Fibonacci Numbers.” J. Lond. Math. Soc., Vol. 35 (1960): pp. 143–160.

    Article  MathSciNet  MATH  Google Scholar 

  6. Freitag, H. “On the Representation of {F kn /F n }, {F kn /L n }, {L kn /L n }, and {L kn /F n } as Zeckendorf Sums.” Applications of Fibonacci Numbers, Volume 3. Edited by G. E. Bergum, A. N. Philippou and A. F. Horadam. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990: pp. 107–114.

    Chapter  Google Scholar 

  7. Hoggatt, V. E. Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.

    MATH  Google Scholar 

  8. Hoggatt, V. E. Jr. “Generalized Zeckendorf Theorem.” The Fibonacci Quarterly, Vol. 10.1 (1972): pp. 89–93.

    MathSciNet  MATH  Google Scholar 

  9. Keller, T. J. “Generalizations of Zeckendorf’s Theorem.” The Fibonacci Quarterly, Vol. 10.1 (1972): pp. 95–102, 111.

    MathSciNet  Google Scholar 

  10. Kimberling, C. “Zeckendorf Number Systems and Associated Partitions.” The Fibonacci Quarterly, Vol. 29.2 (1991): pp. 120–123.

    MathSciNet  Google Scholar 

  11. Klarner, D.A. “Representation of N as a Sum of Distinct Elements from Special Sequences.” The Fibonacci Quarterly, Vol. 4.4 (1966): pp. 289–306.

    MathSciNet  MATH  Google Scholar 

  12. Lekkerkerker, C. G. “Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci.” Simon Stevin, Vol. 29 (1951–52): pp. 190–195.

    MathSciNet  Google Scholar 

  13. Pihko, J. “On Fibonacci and Lucas Representations and a Theorem of Lekkerkerker.” The Fibonacci Quarterly, Vol. 26.3 (1988): pp. 256–261.

    MathSciNet  MATH  Google Scholar 

  14. Zeckendorf, E. “Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas.” Bull. Soc. Royale Sei. Liège, Vol. 41 (1972): pp. 179–182.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Horadam, A.F. (1993). Zeckendorf Representations of Positive and Negative Integers by Pell Numbers. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2058-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2058-6_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4912-2

  • Online ISBN: 978-94-011-2058-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics