Skip to main content

Conformal Invariance, Huygens Principle and Fundamental Solutions for Scalar Second Order Hyperbolic Equations

  • Chapter
  • 465 Accesses

Abstract

New results on group theoretical aspects of the Huygens principle are presented. An extension of Darboux-Lagnese-Stellmacher’s transformation to the wave equations in spaces with non-trivial conformai group is considered. Fundamental solutions of selected Huygens’ equations are constructed by using a new adaptation of the group theoretic technique for distributions. It is observed that the hierarchy of Huygens’ equations is closely related to that of rational solutions for higher Korteweg-de Vries equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christian Huygens, Traité de lumière…, Pierre van der Aa, The Hague, 1690; latest reprint: Dawsons of Pall Mall, London, 1966.

    Google Scholar 

  2. G. R. Kirchhoff, Zur Theorie der Lichtstrahlen, Sitzungsber K. Preuss Akad. Wiss, Berlin, 1882, 641–669.

    Google Scholar 

  3. E. Beltrami, Sul principio di Huygens, Ist. Lombardo Sei. Lett. Rend. (2) 22 (1889), 428–438.

    Google Scholar 

  4. V. Volterra, Sur les vibrations des corps élastiques isotropes, Acta Math. 18 (1894), 161–232.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Hadamard, Lectures on Cauchy’s problem in linear partial differential equations, Yale Univ. Press, New Haven, Conn., 1923.

    Google Scholar 

  6. D. Poisson Mémoire sur la théorie du son, J. de l’École Polytéchn., 7 (1807), 319–392.

    Google Scholar 

  7. O. Tédone, Sull’integrazione dell’equazione \( \frac{{\partial \varphi }}{{\partial {t^2}}} - \sum\nolimits_{{i = 1}}^m {\frac{{{\partial^2}\varphi }}{{\partial x_i^2}}} = 0 \), Ann. di Mat. Pura Appl., 1 Ser. III (1898) 1–23.

    Article  Google Scholar 

  8. M. Mathisson, Le problème de Hadamard relatif a la diffusion des ondes, Acta Math., 71 (1939), 249–282.

    Article  MathSciNet  Google Scholar 

  9. L. Asgeirsson Some Hints on Huygens’ Principle and Hadamard’s Conjecture, Comm. Pure and Appl. Math., 9, N3, (1956), 307–327.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. L. Stellmacher, Ein Beispiel einer Huygensschen Differentialgleichung, Nachr. Acad. Wiss. Göttingen Math.-Phys. 10, K1 11a, (1953), 133–138.

    MathSciNet  Google Scholar 

  11. K. L. Stellmacher, Eine Klasse Huygensscher Differentialgleichungen und ihre Integration, Math Ann., 130 (1955), 219–233.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. E. Lagnese, K. L. Stellmacher, A method of generating classes of Huygens’ operators, J. Math. Mech., 17, N5, (1967), 461–472.

    MathSciNet  MATH  Google Scholar 

  13. J. E. Lagnese, A solution of Hadamard’s problem for a restricted class of operators, Proc. Amer. Math. Soc. 19 (1968), 981–988.

    MathSciNet  MATH  Google Scholar 

  14. J. E. Lagnese, A New Differential Operator of the Pure Wave Type, J. Diff. Eq. 1 (1965), 171–187.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. E. Lagnese, The Structure of a Class of Huygens’ Operators, J. Math. Mech. 18, N12, (1969), 1195–1201.

    MathSciNet  MATH  Google Scholar 

  16. P. Günther, Ein Beispiel einer nichttrivialen Huygensschen Differentialgleichung mit vier unabhanginen variablen, Arch. Rat. Mech. Anal. 18, N2, (1965), 103–106.

    Article  MATH  Google Scholar 

  17. N. H. Ibragimov, E. V. Mamontov, Sur le problème de J. Hadamard relatif à la diffusion des ondes, C. R. Acad. Sci. Paris, 270 (1970), 456–458.

    MathSciNet  MATH  Google Scholar 

  18. N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Nauka, Moscow, 1983, (English transi.: Reidel, Dordrecht, 1985).

    Google Scholar 

  19. N. H. Ibragimov, Huygens Principle, in: Some problems of Mathematics and Mechanics, Nauka, Leningrad, 1970, (English transi.: Amer. Math. Soc. Transi. (2), 104 (1976), pp. 141–152).

    Google Scholar 

  20. A. Z. Petrov, New Methods in the General Theory of Relativity, Nauka, Moscow, 1966 (English transi.: Einstein Spaces, Pergamon Press, Oxford, New York, 1969).

    Google Scholar 

  21. A. P. Chupakhin, Non-trivial conformai groups in Riemannian spaces, Dokl. Akad. Nauk SSSR 246, N5, (1979) (English transi.: Soviet Math. Dokl. 20, N3, 596–599).

    Google Scholar 

  22. G. M. Kagan, On a class of singular problems satisfying Huygens principle. Dokl. Acad. Nauk SSSR, 256, N6, (1981), 1307–1311.

    MathSciNet  Google Scholar 

  23. K. Nishiwada, Huygens’ principle for a generalized Euler-Poisson-Darboux equation, Proc. Japan. Acad., 60, Ser. A, (1984), 197–200.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. O. Oganesyan, Generalization of Lagnese-Stellmacher’s method on a class of equations satisfying Huygens’ principle, IAN Armenii, Ser. Math., 25, N5, (1990), 462–473. (Russian).

    MathSciNet  Google Scholar 

  25. N. H. Ibragimov, A. O. Oganesyan, Hierarchy of Huygens’ equations in the spaces with nontrivial conformai group, Uspechi Math. Nauk, 46, N3, (1991), 111–146 (Russian).

    MathSciNet  Google Scholar 

  26. P. Günther, Zur Gültigkeit des Huygensschen Prinzips bei partielle Differentialgleichungen vom normalen hyperbolischen Typus, Berichte über Verh. Sachs. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl, 100, Heft 2, (1952).

    Google Scholar 

  27. A. O. Oganesyan, Solution of Hadamard’s Problem for Certain Class of Hyperbolic Equations with Variable Coefficients, IAN Armenii, Ser. Math., 26, N2, (1991).

    Google Scholar 

  28. R. G. McLenaghan, An explicit determination of the empty space-time on which the wave equation satisfies Huygens’ principle, Proc. Camb. Philos. Soc. 65, (1969), 139–155.

    Article  MathSciNet  MATH  Google Scholar 

  29. R. G. McLenaghan, On the validity of Huygens’ principle for second order partial differential equations with four independent variables. Part 1: derivation of necessary conditions, Ann. Inst. Henri Poincaré, Sect. A. 20, N2, (1974), 153–188.

    MathSciNet  MATH  Google Scholar 

  30. V. Wünsch, Über selbstadjungierte Huygenssche Differentialgleichungen, Math. Nachr., 47 (1970), 131–154.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Rinke, V. Wünsch, Zum Huygensschen Prinzip bei der skalaren Wellengleichung, Beitrage zur Analysis, 18 (1981), 43–75.

    Google Scholar 

  32. J. Hadamard, The problem of diffusion of waves, Ann. Math., 2 Ser. 43 (1942), 510–522.

    Article  MathSciNet  Google Scholar 

  33. R. Penrose, Conformai Treatment of Infinity, in: Relativité, Groupes et Topologie Les Houches Lectures, 1963 Summer School of Theor. Phys., Univ. Grénoble, New York: Gordon & Breach,(1964), 565–584.

    Google Scholar 

  34. N. H. Ibragimov, On the group classification of second order differential equations, Soviet Math. Dokl. 9 (1968), 1365–1369.

    MATH  Google Scholar 

  35. P. Günther, Huygens’ Principle and Hyperbolic Equations, New York, Academic Press, (1988).

    MATH  Google Scholar 

  36. N. H. Ibragimov, Primer of the Group Analysis, Znanie, Moscow, 1989 (Russian).

    Google Scholar 

  37. Yu. Yu. Berest, Construction of Fundamental Solutions for Huygens’ Equations as Invariant Solutions, Dokl. Akad. Nauk SSSR 317, N4, (1991), 786–789.

    MathSciNet  Google Scholar 

  38. Yu. Yu. Berest, Weak Invariants of Symmetry Group Applied for Constructing Fundamental Solutions, Proc. of the International Workshop “Modern Group Analysis”, Bashkiria, USSR, June, 1991.

    Google Scholar 

  39. N. H. Ibragimov, Group Theoretic Treatment of Fundamental Solutions, in: “Analysis, Manifolds and Physics”, Kluwer, Dordrecht, to appear.

    Google Scholar 

  40. W. I. Fushchych, W. M. Shtelen, N. I. Serov, Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics, Kiev, Naukova Dumka, 1986 (Russian).

    Google Scholar 

  41. I. M. Gel’fand, G. E. Shilov, Generalized Functions, vol. 1, Academic Press, New York, 1964.

    MATH  Google Scholar 

  42. M. Adler, J. Moser, On a class of polynomials connected with the KdV equations, Commun. Math. Phys. 61 (1978), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Zubelli, F. Magri, Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV equations, Commun. Math. Phys. 141 (1991), 329–351.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berest, Y.Y., Ibragimov, N.H., Oganesyan, A.O. (1993). Conformal Invariance, Huygens Principle and Fundamental Solutions for Scalar Second Order Hyperbolic Equations. In: Ibragimov, N.H., Torrisi, M., Valenti, A. (eds) Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2050-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2050-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4908-5

  • Online ISBN: 978-94-011-2050-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics