Skip to main content

Part of the book series: Geobotany ((GEOB,volume 21))

Abstract

Periphyton was cultured on glass slides in a laboratory set-up combining three temperatures (10, 15 and 20 °C) and three irradiances (50, 100 and 200 μE m−2 s−1), with nutrient concentrations simulating eutrophic conditions. Replicate biomass (mg cm−2, ash-free dry weight = afdw) and attenuance (irradiance transmittance reduction relative to blanks) samples were taken every second or third day for a period of 49 days.

Differences in temperature caused more significant differences in logistic growth curves of biomass and algal taxonomic composition than did differences in irradiance. Scenedesmus became the dominant genus at high temperature, while Navicula dominated at low temperature and low irradiance. Maximum periphyton biomass (1.5–3.0 mg cmcm−2 afdw) and instantaneous growth rates that were reached are within the range reported for periphytic mats. Only periphyton dominated by filamentous green algae reached biomasses that were one order of magnitude higher.

Most significant differences between attenuance-biomass curves existed between different irradiances. This pattern is different from that of the growth curves. The different periphyton communities apparently were able to acclimate efficiently to the different irradiance regimes: under low irradiance the initial slope of the curves was steeper, i.e. attenuance per unit biomass increased more, than under high irradiance.

Suspensions of periphytic communities systematically underestimated attenuance of the intact communities by about 40%. Application of Lambert-Beer’s law for exponential extinction appeared invalid since intact periphyton communities did not behave as dilute homogeneous suspensions. A rectangular hyperbola was shown to describe the relation between proportional attenuance and periphyton biomass satisfactorily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allanson, B.R. 1973. The fine structure of the periphyton of Chara sp. and Potamogeton natans from Wytham Pond, Oxford, and its significance to the macrophyte-periphyton metabolic model of R.G. Wetzel and H.L. Allen. Freshwat. Biol. 3: 535–542.

    Article  Google Scholar 

  • Allen, H.L. 1971. Primary productivity, chemo-organotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecol. Monogr. 41: 97–127.

    Article  Google Scholar 

  • Antoine, S.E.& Benson-Evans, K. 1983a. The effect of light intensity and quality on the growth of benthic algae 1. Phytopigment variations. Arch. Hydrobiol. 98: 299–306.

    Google Scholar 

  • Belcher, H.& Swale, E. 1976. A Beginner’s Guide to Freshwater Algae. Culture Centre of Algae and Protozoa, Cambridge, 47 pp.

    Google Scholar 

  • Berry, J.A.& Raison, J.K. 1981. Responses of macrophytes to temperature. In: Lange, O.L., Nobel, P.S., Osmond, C.B.& Ziegler, H. (eds), Physiological Plant Ecology I. Responses to the Physical Environment. Encyclopedia of Plant Physiology, new series, vol 12a, pp. 277–338. Springer, Berlin.

    Google Scholar 

  • Blindow, I. 1987. The composition and density of epiphyton on several species of submerged macrophytes — the neutral substrate hypothesis tested. Aquat. Bot. 29: 157–168.

    Article  Google Scholar 

  • Borum, J. 1985. Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary. Mar. Biol. 87: 211–218.

    Article  Google Scholar 

  • Borum, J.& Wium-Andersen, S. 1980. Biomass and production of epiphytes on Eelgrass (Zostera marina L.) in the Øresund, Denmark. Ophelia, Suppl. 1: 57–64.

    Google Scholar 

  • Bulthuis, D.A.& Woelkerling, W.J. 1983. Biomass accumulation and shading effects of epiphytes on the leaves of Heterozostera tasmanica, in Victoria, Australia. Aquat. Bot. 16: 137–148.

    Article  Google Scholar 

  • Calow, P. 1970. Studies on the natural diet of Lymnaea pereger obtusa (Kobelt) and its possible ecological implications. Proc. malac. Soc. Lond. 39: 203–215.

    Google Scholar 

  • Calow, P. 1973. Field observations and laboratory experiments on the general food requirements of two species of freshwater snail, Planorbis contortus (Linn.) and Ancylus fluviatilis Müll. Proc. malac. Soc. Lond. 40: 483–489.

    Google Scholar 

  • Cattaneo, A. 1983. Grazing on epiphytes. Limnol. Oceanogr. 28: 124–132.

    Article  Google Scholar 

  • Cattaneo, A.& Kalff, J. 1978. Seasonal changes in the epiphytic community of natural and artificial macrophytes in Lake Memphremagog (Que&Vt). Hydrobiologia 60: 135–144.

    Article  Google Scholar 

  • Cattaneo, A.& Kalff, J. 1979. Primary production of algae growing on natural and artificial aquatic plants: a study of interactions between epiphytes and their substrate. Limnol. Oceanogr. 24: 1031–1037.

    Article  Google Scholar 

  • Causton, D.R.& Venus, J.C. 1981. The Biometry of Plant Growth. Arnold, London, 307 pp.

    Google Scholar 

  • Chang, R. 1977. Physical Chemistry with Application to Biological Systems. Macmillan, New York, 538 pp.

    Google Scholar 

  • Conway, G.R., Glass, N.R.& Wilcox, J.C. 1970. Fitting nonlinear models to biological data by Marquardt’s algorithm. Ecology 51: 503–507.

    Article  Google Scholar 

  • Cummins, K.W. 1973. Trophic relations of aquatic insects. Ann. Rev. Ent. 18: 183–206.

    Article  Google Scholar 

  • Eichenberger, E.& Wuhrmann, K. 1975. Growth and photosynthesis during the formation of a benthic algal community. Verh. int. Verein. Limnol. 19: 2035–2042.

    Google Scholar 

  • Eminson, D.& Moss, B. 1980. The composition and ecology of periphyton communities in freshwaters 1. The influence of host type and external environment on community composition. Br. Phycol. J. 15: 429–446.

    Article  Google Scholar 

  • Eminson, D.& Phillips, G. 1978. A laboratory experiment to examine the effects of nutrient enrichment on macrophyte and epiphyte growth. Verh. int. Verein. Limnol. 20: 82–87.

    Google Scholar 

  • Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063–1085.

    Google Scholar 

  • Fairchild, G.W.& Everett, A.C. 1988. Effects of nutrient (N P C) enrichment upon periphyton standing crop, species composition and primary production in an oligotrophic softwater lake. Freshwat. Biol. 19: 57–70.

    Article  CAS  Google Scholar 

  • Feminella, J.W., Power, M.E.& Resh, V.H. 1989. Periphyton responses to invertebrate grazing and riparian canopy in three northern Californian coastal streams. Freshwat. Biol. 22: 445–457.

    Article  Google Scholar 

  • Gons, H.J. 1982. Structural and functional characteristics of epiphyton and epipelon in relation to their distribution in Lake Vechten. Hydrobiologia 95: 79–114.

    Article  CAS  Google Scholar 

  • Gons, H.J.& Van Keulen, R. 1983. Seasonal dynamics in organic matter and dark oxygen uptake of epiphyton and epipelon in relation to seston deposition in Lake Vechten. In: Wetzel, R.G. (ed.), Periphyton of Freshwater Ecosystems, pp. 175–183. Dr W. Junk Publishers, The Hague, The Netherlands.

    Chapter  Google Scholar 

  • Gough, S. B.& Gough, L.P. 1981. Comment on ‘Primary production of algae growing on natural and artificial plants: a study of interactions between epiphytes and their substrate (Cattaneo and Kalff)’. Limnol. Oceanogr. 26: 987–988.

    Article  Google Scholar 

  • Haynes, A.& Taylor, B.J.R. 1984. Food finding and food preference in Potamopyrgus jenkinsi (E.A. Smith) (Gastropoda Prosobranchia). Arch. Hydrobiol. 100: 479–491.

    Google Scholar 

  • Herder-Brouwer, S.J. 1975. The development of periphyton on artificial substrates. Hydrobiol. Bull. 9: 81–86.

    Article  Google Scholar 

  • Hunter, D.R. 1980. Effects of grazing on the quantity and quality of freshwater aufwuchs. Hydrobiologia 69: 251–259.

    Article  Google Scholar 

  • Hutchinson, G.E. 1975. A Treatise on Limnology III, Limnological Botany. Wiley, New York, 660 pp.

    Google Scholar 

  • Jeffrey, S.W. 1981. Responses to light in aquatic plants. In: Lange, O.L., Nobel, P.S., Osmond, C.B.& Ziegler, H. (eds), Physiological Plant Ecology I, Responses to the Physical Environment. Encyclopedia of Plant Physiology, new series, vol. 12a, pp. 249–276. Springer, Berlin.

    Google Scholar 

  • Jenkerson, C.G.& Hickman, M. 1986. Interrelationships among the epipelon, epiphyton and phytoplankton in a eutrophic lake. Int. Revue ges. Hydrobiol. 71: 557–579.

    Article  CAS  Google Scholar 

  • Kairesalo, T. 1984. The seasonal succession of epiphytic communities within an Equisetum fluviatile L. stand in Lake Pääjärvi, Southern Finland. Int. Revue ges. Hydrobiol. 69: 475–505.

    Article  Google Scholar 

  • Kehde, P.M.& Wilhm, J.L. 1972. The effects of grazing by snails on community structure of periphyton in laboratory streams. Am. Midl. Nat. 87: 8–24.

    Article  Google Scholar 

  • Kirk, J.T.O. 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, 401 pp.

    Google Scholar 

  • Losee, R.F.& Wetzel, R.G. 1983. Selective light attenuation by the periphyton complex. In: Wetzel, R.G. (ed.), Periphyton of Freshwater Ecosystems, pp. 89–96. Dr W. Junk Publishers, The Hague, The Netherlands.

    Chapter  Google Scholar 

  • Liming, K. 1981. Light. In: Lobban, C.S. and Wynne M.J. (eds), The Biology of Seaweeds, Botanical Monographs vol. 17, pp. 326–355. Blackwell, Oxford.

    Google Scholar 

  • Mason, C.F.& Bryant, R.J. 1975. Periphyton production and grazing by chironomids in Alderfen Broad, Norfolk. Freshwat. Biol. 5: 271–277.

    Article  Google Scholar 

  • Mclntire, C.D.& Phinney, H.K. 1965. Laboratory studies of periphyton production and community metabolism in lotic environments. Ecol. Monogr. 35: 237–258.

    Article  Google Scholar 

  • McMahon, R.F., Hunter, R.D.& Russel-Hunter, W.D. 1974. Variation in aufwuchs at six freshwater habitats in terms of carbon biomass and of carbon: nitrogen ration. Hydrobiologia 45: 391–404.

    Article  Google Scholar 

  • Meulemans, J.T. 1987. A method or measuring selective light attenuation within a periphytic community. Arch. Hydrobiol. 109: 139–145.

    Google Scholar 

  • Meulemans, J.T.& Heinis, F. 1983. Biomass and production of periphyton attached to dead red stems in Lake Maarsseveen. In: Wetzel, R.G. (ed.), Periphyton of Freshwater Ecosystems, pp. 169–173. Dr. W. Junk Publishers, The Hague, The Netherlands.

    Chapter  Google Scholar 

  • Meulemans, J.T.& Roos, P.J. 1985. Structure and architecture of the periphytic community on dead reed stems in Lake Maarsseveen. Arch. Hydrobiol. 102: 487–502.

    CAS  Google Scholar 

  • Moed, J.R.& Hallegraef, G.M. 1978. Some problems in the estimation of chlorophyll-a and phaeopigments from pre-and post-acidification spectrophotometric measurements. Int. Revue ges. Hydrobiol. 63: 787–800.

    Article  CAS  Google Scholar 

  • Moeller, R.E., Burkholder, J.M.& Wetzel, R.G. 1988. Significance of sedimentary phosphorus to rooted submerged macrophytes (Najas flexilis (Willd.) Rostk. and Schmidt) and its algal epiphytes. Aquat. Bot. 32: 261–281.

    Article  Google Scholar 

  • Nederlandse Praktijkrichtlijn. 1984. NPR 6505, benodigdheden, werkwijze en medium voor het kweken van algen, (Dutch Standards, materials and methods for the cultivation of alga, in Dutch). Nederlands Normalisatie Instituut, Delft, The Netherlands, 4 pp.

    Google Scholar 

  • Norusis, M.J. 1986. SPSS-PC+ Manual. SPSS Inc., Chicago, U.S.A., 559 pp.

    Google Scholar 

  • O’Neill-Morin, J.& Kimball, K.D. 1983. Relationship of macrophyte-mediated changes in the water column to periphyton composition and abundance. Freshwat. Biol. 13: 403–414.

    Article  Google Scholar 

  • Osenberg, C.W. 1989. Resource limitation, competition and the influence of life history in a freshwater snail community. Oecologia 79: 512–519.

    Article  Google Scholar 

  • Phillips, G.L., Eminson, D.F.& Moss, B. 1978. A mechanism to account for macrophyte decline in progressively eutrophicated waters. Aquat. Bot. 4: 103–125.

    Article  Google Scholar 

  • Reavell, P.E. 1980. A study of the diets of some British freshwater gastropods. J. Conch. 30: 253–271.

    Google Scholar 

  • Reynolds, C.S. 1988. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verh. int. Verein. Limnol. 23: 683–691.

    Google Scholar 

  • Riber, H.H., Sørensen, J.P.& Kowalczewski, A. 1983. Exchange of phosphorus between water, macrophytes and epiphytic periphyton in the littoral of Mikolajskie Lake, Poland. In: Wetzel, R.G. (ed.), Periphyton of Freshwater Ecosystems, pp. 235–243. Dr W. Junk Publishers, The Hague, The Netherlands.

    Chapter  Google Scholar 

  • Richardson, K., Beardall, J.& Raven, J.A. 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93: 157–191.

    Article  Google Scholar 

  • Richter, G. 1978. Plant Metabolism, Physiology and Biochemistry of Primary Metabolism. Thieme, Stuttgart, 475 pp.

    Google Scholar 

  • Robinson, G.G.C. 1983. Methodology: the key to understanding periphyton. In: Wetzel, R.G. (ed.), Periphyton of Freshwater Ecosystems, pp. 245–251. Dr W. Junk Publishers, The Hague, The Netherlands.

    Chapter  Google Scholar 

  • Rodriguez, M.A. 1987. Estimating periphyton growth parameters using simple models. Limnol. Oceanogr. 32: 458–464.

    Article  CAS  Google Scholar 

  • Rogers, K.H.& Breen, C.M. 1983. An investigation of macrophyte, epiphyte and grazer interactions. In: Wetzel, R.G. (ed.), Periphyton of Freshwater Ecosystems, pp. 217–226. Dr W. Junk Publishers, The Hague, The Netherlands.

    Chapter  Google Scholar 

  • Sand-Jensen, K. 1977. Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot. 3: 55–63.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K.& Borum, J. 1983. Regulation of growth of eelgrass (Zostera marina L.) in Danish coastal waters. Mar. Techn. Soc. J. 17: 15–21.

    Google Scholar 

  • Sand-Jensen, K.& Borum, J. 1984. Epiphyte shading and its effect on photosynthesis and diel metabolism of Lobelia dortmanna L. during the spring bloom in a Danish lake. Aquat. Bot. 20: 109–119.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K.& Søndergaard, M. 1981. Phytoplankton and epiphytic development and their shading effect on submerged macrophytes in lakes of different nutrient status. Int. Revue ges. Hydrobiol. 66: 529–552.

    Article  Google Scholar 

  • Sand-Jensen, K., Borg, D.& Jeppesen, E. 1989. Biomass and oxygen dynamics of the epiphytic community in a Danish lowland stream. Freshwat. Biol. 22: 431–443.

    Article  CAS  Google Scholar 

  • Silberstein, K., Chiffings, A.W.& McComb, A.J. 1986. The loss of seagrass in Cockburn Sound, Western Australia III. The effect of epiphytes on the productivity of Posidonia australis Hook. F. Aquat. Bot. 24: 355–371.

    Article  Google Scholar 

  • Sommer, U., Gliwicz, Z.M., Lampert, W.& Duncan, A. 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Soszka, G.J. 1975. Ecological relations between invertebrates and submerged macrophytes in the lake littoral. Ekol. Polska 23: 393–415.

    Google Scholar 

  • Streble, H.& Krauter, D. 1985. Das Leben im Wassertropfen: Mikroflora und Mikrofauna des Süsswassers; ein Bestimmungsbuch. 7. Auflage, Kosmos — Franckh’sche Verlagshandlung, W. Keller&Co, Stuttgart, 369 pp.

    Google Scholar 

  • Sumner, W.T.& Mclntire, C.D. 1982. Grazer-periphyton interactions in laboratory streams. Arch. Hydrobiol. 93: 135–157.

    CAS  Google Scholar 

  • Tilman, D., Kiesling, R., Sterner, R., Kilham, S.S.& Johnson, F.A. 1986. Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol. 106: 473–485.

    Google Scholar 

  • Van Montfrans, J., Orth, R.J.& Vay, S.A. 1982. Preliminary studies of grazing by Bittium varium on eelgrass periphyton. Aquat. Bot. 14: 75–89.

    Article  Google Scholar 

  • Van Dijk, G.M. 1991. Light climate and its impact on Potamogeton pectinatus L. in a shallow eutrophic lake. Ph.D. thesis, Wageningen Agricultural University, 125 pp.

    Google Scholar 

  • Van Vierssen, W. 1983. The influence of human activities on the functioning of macrophyte-dominated aquatic ecosystems in the coastal area of Western Europe. Int. Symp. Aquat. Macrophytes, Nijmegen, The Netherlands, 1983, pp. 273–281.

    Google Scholar 

  • Vermaat, J.E.& K. Sand-Jensen 1987. Survival, metabolism and growth of Ulva lactuca under winter conditions: a laboratory study of bottlenecks in the life cycle. Mar. Biol. 95: 55–61.

    Article  Google Scholar 

  • Vermaat, J.E., Hootsmans, M.J.M.& Van Dijk, G.M. 1990. Ecosystem development in different types of littoral enclosures. Hydrobiologia 200/201: 391–398.

    Article  Google Scholar 

  • Vernon, L.P. 1960. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal. Chem. 32: 1144–1150.

    Article  CAS  Google Scholar 

  • Wetzel, R.G. 1983a. Opening remarks. In: Wetzel, R.G. (ed.), Periphyton of Freshwater Ecosystems, pp. 3–4. Dr W. Junk Publishers, The Hague, The Netherlands.

    Chapter  Google Scholar 

  • Wetzel, R.G. 1983b. Limnology. 2nd edition. Saunders College Publishing, Philadelphia, 860 pp.

    Google Scholar 

  • Wetzel, R.G. 1983c. Attached algal-substrata interactions: fact or myth, and when and how. In: Wetzel, R.G. (ed.), Periphyton of Freshwater Ecosystems, pp. 207–215. Dr W. Junk Publishers, The Hague, The Netherlands.

    Chapter  Google Scholar 

  • Wilhm, J.L.& Long, J. 1969. Succession in algal mat communities at three different nutrient levels. Ecology 50: 645–652.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Wim van Vierssen Michiel Hootsmans Jan Vermaat

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vermaat, J.E., Hootsmans, M.J.M. (1994). Periphyton dynamics in a temperature-light gradient. In: van Vierssen, W., Hootsmans, M., Vermaat, J. (eds) Lake Veluwe, a Macrophyte-dominated System under Eutrophication Stress. Geobotany, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2032-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2032-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4899-6

  • Online ISBN: 978-94-011-2032-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics