Recent Progress in the Theory and Application of Symplectic Integrators

  • Haruo Yoshida

Abstract

In this paper various aspect of symplectic integrators are reviewed. Symplectic integrators are numerical integration methods for Hamiltonian systems which are designed to conserve the symplectic structure exactly as the original flow. There are explicit symplectic schemes for systems of the form H = T (p) + V (q), and implicit schemes for general Hamiltonian systems. As a general property, symplectic integrators conserve the energy quite well and therefore an artificial damping (excitation) caused by the accumulation of the local truncation error cannot occur. Symplectic integrators have been applied to the Kepler problem, the motion of minor bodies in the solar system and the long-term evolution of outer planets.

Key words

Numerical integration methods long time evolution symplectic mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abia, L. and Sanz-Sema, J.M.: 1990, ‘Partitioned Runge-Kutta methods for separable Hamiltonian problems’, Universidad de Valladolid, Applied Mathematics and Computation Reports 1990/8 Google Scholar
  2. Auerbach, S.P. and Friedman, A.: 1991, ‘Long-time behaviour of numerically computed orbits: small and intermediate time step analysis of one-dimensional systems’, J. Comp. Phys. 93, 189–223MathSciNetADSMATHCrossRefGoogle Scholar
  3. Calvo, M.P. and Sanz-Serna, J.M: 1991, ‘Variable steps for symplectic integrators’, Universidad de Valladolid, Applied Mathematics and Computation Reports 1991/3 Google Scholar
  4. Calvo, M.P. and Sanz-Sema, J.M: 199la, ‘The development of variable-step symplectic integrators, with application to the two-body problem’, Universidad de Valladolid, Applied Mathematics and Computation Reports 1991/9 Google Scholar
  5. Candy, J. and Rozmus, W.: 1991, ‘A symplectic integration algorithm for separable Hamiltonian functions’, J. Comp. Phys. 92, 230–256MathSciNetADSMATHCrossRefGoogle Scholar
  6. Channell, PJ. and Scovel, J.C.: 1990,‘Symplectic integration of Hamiltonian systems’, Nonlinearity 3, 231–259MathSciNetADSMATHCrossRefGoogle Scholar
  7. Dekker, K. and Verwer, J.G.: 1984, Stability of Runge-Kutta methods for stiff` nonlinear differential equations, North-HollandMATHGoogle Scholar
  8. Dragt, A.J. and Finn, J.M.: 1976, ‘Lie series and invariant functions for analytic symplectic maps’, J. Math. Phys. 17, 2215–2227MathSciNetADSMATHCrossRefGoogle Scholar
  9. Dragt, A.J., Neri, F., Rangarajan, G., Douglas, D.R., Healy, L.M. and Ryne, R.D.: 1988, ‘Lie algebraic treatment of linear and nonlinear beam dynamics’, Ann. Rev. Nucl. Part. Sci. 38, 455–496ADSCrossRefGoogle Scholar
  10. Eirola, T. and Sanz-Serna, J.M.: 1990, ‘Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods’, Universidad de Valladolid, Applied Mathematics and Computation Reports 1990/9 Google Scholar
  11. Feng, K. and Qin, M.: 1987, ‘The symplectic methods for the computation of Hamiltonian equations’, Lecture Note in Math. 1297,1–37MathSciNetCrossRefGoogle Scholar
  12. Forest, E.: 1987, ‘Canonical integrators as tracking codes’, SSC Central Design Group Technical Report SSC-138 Google Scholar
  13. Forest, E., Brengtsson, J. and Reusch M.F.: 1991, ‘Application of the Yoshida-Ruth techniques to implicit integration and multi-map explicit integration’, Phys. Lett. A 158, 99–101MathSciNetADSCrossRefGoogle Scholar
  14. Forest, E. and Ruth, R.D.: 1990, ‘Fourth-order symplectic integration’, Physica D 43, 105–117MathSciNetADSMATHCrossRefGoogle Scholar
  15. Friedman, A. and Auerbach, S.P.: 1991, ‘Numerically induced stochasticity’, J. Comp. Phys. 93, 171–188MathSciNetADSMATHCrossRefGoogle Scholar
  16. Ge, Z. and Marsden, J.E.: 1988, ‘Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators’, Phys. Lett. A 133, 134–139MathSciNetADSCrossRefGoogle Scholar
  17. Giacaglia, G.E.O.: 1972, Perturbation methods in non-linear systems, SpringerCrossRefGoogle Scholar
  18. Gladman, B. and Duncan, M.: 1990, ‘On the fates of minor bodies in the outer solar system’, Astron.J.100, 1680–1693ADSCrossRefGoogle Scholar
  19. Gladman, B., Duncan, M. and Candy, J.: 1991, ‘Symplectic integrators for long-term integrations in celestial mechanics’, Celest. Mech. 52, 221–240MathSciNetADSMATHCrossRefGoogle Scholar
  20. Greene, J.M.: 1979, ‘A method for determining a stochastic transition’, J. Math. Phys. 20, 1183–1201ADSCrossRefGoogle Scholar
  21. Gustayson, F.: 1966, ‘On constructing formal integrals of a Hamiltonian system near an equilibrium points’, Astron. J. 71, 670–686ADSCrossRefGoogle Scholar
  22. Itoh, T. and Abe, K.: 1988, ‘Hamiltonian-conserving discrete canonical equations based on variational difference quotients’, J. Comp. Phys. 77, 85–102MathSciNetADSCrossRefGoogle Scholar
  23. Itoh, T. and Abe, K.: 1989, ‘Discrete Lagrange’s equations and canonical equations based on the principle of least action, Applied Math. Comp. 29, 161–183MathSciNetMATHCrossRefGoogle Scholar
  24. Kinoshita, H. and Nakai, H.: 1991, ‘New methods for long-time numerical integration of planetary orbits’, National Astronomical Observatory of Japan, preprintGoogle Scholar
  25. Kinoshita, H., Yoshida, H. and Nakai, H.: 1991, ‘Symplectic integrators and their application to dynamical astronomy’, Celest. Mech. 50, 59–71ADSMATHCrossRefGoogle Scholar
  26. Lasagni, F.: 1988, ‘Canonical Runge-Kutta methods’, ZAMP 39, 952–953MathSciNetADSMATHCrossRefGoogle Scholar
  27. MacKay, R.S.: 1991, ‘Some aspects of the dynamics and numerics of Hamiltonian systems’, University of Warwick, preprintGoogle Scholar
  28. McLachlan, R. and Atela, P.: 1991, ‘The accuracy of symplectic integrators’, Nonlinearity 5, 541–562MathSciNetADSCrossRefGoogle Scholar
  29. Mersman, W.A.: 1971, ‘Explicit recursive algorithms for the construction of equivalent canonical transformations’, Celest. Mech. 3, 384–389MathSciNetADSMATHCrossRefGoogle Scholar
  30. Neri, F.: 1987, ‘Lie algebras and canonical integration’, Dept. of Physics, University of Maryland, preprintGoogle Scholar
  31. Okunbor, D. and Skeel, R.D.: 1991, ‘Explicit canonical methods for Hamiltonian systems’, Dept. of Computer Sci., Univ. of Illinois at Urbana-Champaign, preprintGoogle Scholar
  32. Okunbor, D. and Skeel, R.D.: 1992, ‘An explicit Runge-Kutta-Nystrom method is canonical if and only if its adjoint is explicit’, SIAM J. Numer. Anal. 29 Google Scholar
  33. Okunbor, D. and Skeel, R.D.: 1992a, ‘Canonical Runge-Kutta-Nystrom methods of order 5 and 6’, Dept. of Computer Sci., Univ. of Illinois at Urbana-Champaign, preprintGoogle Scholar
  34. Pullin, D.I. and Saffman, P.G.: 1991, ‘Long time symplectic integration, the example of four-vortex motion’, Proc. R. Soc. London A 432, 481–494MathSciNetADSMATHCrossRefGoogle Scholar
  35. Quinlan, G.D. and Toomre, A.: 1991, ‘Resonant instabilities in symmetric multistep methods’, University of Toronto, preprintGoogle Scholar
  36. Quinlan, G.D. and Tremaine, S.: 1990, ‘Symmetric multistep methods for the numerical integration of planetary orbits’, Astron. J. 100, 1694–1700ADSCrossRefGoogle Scholar
  37. Ruth, R.D.: 1983, ‘A canonical integration technique’, IEEE Trans. Nucl. Sci. NS-30, 2669–2671ADSCrossRefGoogle Scholar
  38. Saito, S., Sugiura, H. and Mitsui, T.: 1992, ‘Family of symplectic implicit Runge-Kutta formulae’, Dept. of information engineering, Nagoya university, preprintGoogle Scholar
  39. Sanz-Sema, J.M.: 1988, ‘Runge-Kutta schemes for Hamiltonian systems’, BIT 28, 877–883MathSciNetCrossRefGoogle Scholar
  40. Sanz-Serna, J.M.: 1991, ‘Symplectic integrators for Hamiltonian problems: an overview’, Universidad de Valladolid, Applied Mathematics and Computation Reports 1991/6 Google Scholar
  41. Sanz-Sema, J.M. and Abia, L.: 1991, ‘Order conditions for canonical Runge-Kutta schemes’, SIAM J. Numer. Anal. 28, 1081–1096MathSciNetCrossRefGoogle Scholar
  42. Scovel, C: 1991, ‘Symplectic numerical integration of Hamiltonian systems’, in The geometry of Hamiltonian systems, Ratiu, T. ed., Springer, 463–496CrossRefGoogle Scholar
  43. Sussman, GJ. and Wisdom, J.: 1988, ‘Numerical evidence that the motion of Pluto is chaotic’, Science 241, 433–437ADSCrossRefGoogle Scholar
  44. Suzuki, M.: 1990, ‘Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations’, Phys. Lett. A 146, 319–323MathSciNetADSCrossRefGoogle Scholar
  45. Suzuki, M.: 1991, ‘General theory of fractal path integrals with applications to many-body theories and statistical physics’, J. Math. Phys. 32, 400–407MathSciNetADSMATHCrossRefGoogle Scholar
  46. Suzuki, M.: 1992, ‘General theory of higher-order decomposition of exponential operators and Symplectic integrators’, Dept. of Physics, University of Tokyo, preprintGoogle Scholar
  47. Varadarajan, V.S.: 1974, Lie groups, Lie algebras and their representation, Prentice-HallGoogle Scholar
  48. Wisdom, J. and Holman, M.: 1991, ‘Symplectic maps for the N-body problem’, Astron. J. 102, 1528–1538ADSCrossRefGoogle Scholar
  49. Yoshida, H.: 1990, ‘Construction of higher order symplectic integrators’, Phys. Lett. A 150, 262–268MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Haruo Yoshida
    • 1
  1. 1.National Astronomical ObservatoryMitaka,TokyoJapan

Personalised recommendations