Population genetics of transposable DNA elements

A Drosophila point of view
  • C. Biémont
Part of the Contemporary Issues in Genetics and Evolution book series (CIGE, volume 1)


This paper is an attempt to bring together the various, dispersed data published in the literature on insertion polymorphism of transposable elements from various kinds of populations (natural populations, laboratory strains, isofemale and inbred lines). Although the results deal mainly with Drosophila, data on other organisms have been incorporated when necessary to illustrate the discussion. The data pertinent to the regions of insertion, the rates of transposition and excision, the copy number regulation, and the degree of heterozygosity were analysed in order to be confronted with the speculations made with various theoretical models of population biology of transposable elements. The parameters of these models are very sensitive to the values of the transposable element characteristics estimated on populations, and according to the difficulties of these estimations (population not at equilibrium, particular mutations used to estimate the transposition and excision rates, trouble with the in situ technique used to localize the insertions, undesired mobilization of TEs in crosses, spontaneous genome resetting, environmental effects, etc.) it cannot be decided accurately which model better accounts for the population dynamics of these TEs. Tendencies, however, emerge in Drosophila: the copia element shows evidence for deficiency of insertions on the X chromosomes, a result consistent with selection against mutational effects of copia insertions; the P element repartition does not significantly deviate from the neutral assumption, in spite of a systematic copy number of insertions higher on the X than on the autosomes. Data on other elements support either the neutral model of TE containment, neither of the two models, or both. Prudence in conclusion should then be de rigueur when dealing with such kind of data. Finally the potential roles of TEs in population adaptation and evolution are discussed.

Key words

Drosophila population genetics transposable elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguadé, M., N Miyashita & C. H. Langley, 1989. Restrictionmap variation at the zest-tko region in natural populations of Drosophila melanogaster. Mol. Biol. Evol. 6: 123–130.PubMedGoogle Scholar
  2. Ajioka, J. W. & W. F. Eanes, 1989. The accumulation of P-elements on the tip of the X chromosome in populations of Drosophila melanogaster. Genet. Res. 53: 1–6.PubMedCrossRefGoogle Scholar
  3. Ajioka, J. W. & D. L. Haiti, 1989. Population dynamics of transposable elements, pp. 939–958 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology. Washington D.C.Google Scholar
  4. Ananiev, E. V, V. E. Barsky, Yu V. Ilyin & M. V. Ryzic, 1984. The arrangement of transposable elements in the polytene chromosomes of Drosophila melanogaster. Chromosoma 90: 366–377.CrossRefGoogle Scholar
  5. Ananiev, E. V., V. A. Gvozdev, Y. V. Ilyin, N. A. Tchurikov & G. P. Géorgiev, 1978. Reiterated genes with varying location in intercalary heterochromatin regions of Drosophila melanogaster polytene chromosomes. Chromosoma 70: 1–17.PubMedCrossRefGoogle Scholar
  6. Anderson, W. W., 1969. Genetics of natural populations XLI. The selection coefficients of heterozygotes for lethal chromosomes in Drosophila on different genetic backgrounds. Genetics 62: 827–836.PubMedGoogle Scholar
  7. Aquadro, C. F., S. F. Deese, M. M. Bland, C. H. Langley & C. C. Laurie-Ahlberg, 1986. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics 114: 1165–1190.PubMedGoogle Scholar
  8. Aquadro, C. F., H. Tachida, C. H. Langley, K. Harada & T. Mukai, 1990. Increased variation in ADH enzyme activity in Drosophila mutation-accutnulation experiment is not due to transposable elements at the Adh structural gene. Genetics 126: 915–919.PubMedGoogle Scholar
  9. Arnault, C, A. Heizmann, C. Loevenbruck & C. Biémont, 1991. Environmental Stresses and mobilization of transposable elements in inbred lines of Drosophila melanogaster. Mutation Res. 248: 51–60.PubMedCrossRefGoogle Scholar
  10. Baker, R. J. & H. A. Wichman, 1990. Retrotransposon MYS is concentrated on the sex chromosomes: implications for copy number containment. Evolution 44: 2083–2088.CrossRefGoogle Scholar
  11. Barrett, S. C. H. & D. Charlesworth, 1991. Effects of a change in the level of inbreeding on the genetic load. Nature 352: 522–524.PubMedCrossRefGoogle Scholar
  12. Belyaeva, E. Sp., E. V. Ananiev & V. A. Gvozdev, 1984. Distribution of mobile dispersed genes (mdg-1 and mdg-3) in the chromosomes of Drosophila melanogaster. Chromosoma 90: 16–19.CrossRefGoogle Scholar
  13. Biémont, C, 1986. Polymorphism of the mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93: 393–397.CrossRefGoogle Scholar
  14. Biémont, C. & A. Aouar, 1987. Copy-number dependent transpositions and excisions of the mdg-1 mobile element in inbred lines of Drosophila melanogaster. Heredity 58: 39–47.CrossRefGoogle Scholar
  15. Biémont, C, A. Aouar & C. Arnault, 1987. Genome reshuffling of the copia element in a Drosophila melanogaster inbred line. Nature 329: 742–744.PubMedCrossRefGoogle Scholar
  16. Biémont, C, A. Aouar, C. Gautier & C. Terzian, 1989. Hybrid viability is correlated with the I and P mobile element copy numbers of the maternal inbred line in Drosophila melanogaster. Heredity 62: 301–305.CrossRefGoogle Scholar
  17. Biémont, C, C. Arnault, A. Heizmann & S. Ronsseray, 1990a. Massive changes in genomic locations of P elements in an inbred line of Drosophila melanogaster. Naturwissenschaften 77: 485–488.PubMedCrossRefGoogle Scholar
  18. Biémont, C. & C. Gautier, 1987. Mdg-1 mobile element heterozygosity in Drosophila melanogaster. Heredity 58: 167–172.CrossRefGoogle Scholar
  19. Biémont, C. & C. Gautier, 1988. Localisation polymorphism of mdg-1, copia, I and P mobile elements in genomes of Drosophila melanogaster, from data of inbred lines. Heredity 60: 335–346.CrossRefGoogle Scholar
  20. Biémont, C. & C. Gautier, 1989. Interactions between transposable elements for insertion in the Drosophila melanogaster genome. Heredity 63: 125–133.PubMedCrossRefGoogle Scholar
  21. Biémont, C, C. Gautier & A. Heizmann, 1988. Independent regulation of mobile element copy number in Drosophila melanogaster inbred lines. Chromosoma 96: 291–294.CrossRefGoogle Scholar
  22. Biémont, C, S. Ronsseray, D. Anxolabéhère, H. Izaabel & C. Gautier, 1990b. Localisation of P elements, copy number regulation, and cytotype determination in Drosophila melanogaster. Genet. Res. 56: 3–14.PubMedCrossRefGoogle Scholar
  23. Biémont, C. & C. Terzian, 1986. Regulation in the number of mdg-l mobile elements in inbred Drosophila melanogaster. Genetica 71: 161–165.CrossRefGoogle Scholar
  24. Boeke, J. D., 1989. Transposable elements in Saccharomyces cerevisiae, pp. 335–374 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington D.C.Google Scholar
  25. Boeke, J., D. Garfinkel, C. Styles & G. Fink, 1985. Ty elements transpose through an RNA indermediate. Cell 40: 491–500.PubMedCrossRefGoogle Scholar
  26. Bownes, M., 1990. Preferential insertion of P elements into genes expressed in the germ line of Drosophila melanogaster. Mol. Gen. Genet. 222: 457–460.PubMedCrossRefGoogle Scholar
  27. Bradshaw, V. A. & K. McEntee, 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218: 465–474.PubMedCrossRefGoogle Scholar
  28. Brégliano, J. C. & M. G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press, N.Y.Google Scholar
  29. Brookfield, J. F. Y, 1986. The population biology of transposable elements. Phil. Trans. R. Soc. Lond. 312: 217–226.CrossRefGoogle Scholar
  30. Brookfield, J. F. Y, 1991. Models of repression of transposition in P-M hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins. Genetics 128: 471–486.PubMedGoogle Scholar
  31. Bryant, E. H., S. A. McCommas & L. M. Combs, 1986. The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics 114: 1191–1211.PubMedGoogle Scholar
  32. Bryant, E. H., L. M. Meffert & S. A. McCommas, 1990. Fitness rebound in serially bottleneck populations of the house fly. The Amer. Nat. 136: 542–549.CrossRefGoogle Scholar
  33. Charlesworth, B., 1985. The population genetics of transposable elements, pp. 213–232 in Population genetics and molecular evolution, edited by T. Ohta & K. Aoki. Springer-Verlag, Berlin.Google Scholar
  34. Charlesworth, B., 1988. The maintenance of transposable elements in natural populations, pp. 189–212 in Plant Transposable Elements, edited by O. Nelson. Plenum Press, N.Y., London.CrossRefGoogle Scholar
  35. Charlesworth, B., 1991. Transposable elements in natural populations with a mixture of selected and neutral insertion sites. Genet. Res. 57: 127–134.PubMedCrossRefGoogle Scholar
  36. Charlesworth, B. & D. Charlesworth, 1983. The population dynamics of transposable elements. Genet. Res. 42: 1–27.CrossRefGoogle Scholar
  37. Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable elements. Ann. Rev. Genet. 23: 251–287.PubMedCrossRefGoogle Scholar
  38. Charlesworth, B. & A. Lapid, 1989. A study of 10 transposable elements on X chromosomes from a population of Drosophila melanogaster. Genet. Res. 54: 113–125.PubMedCrossRefGoogle Scholar
  39. Cooley, L., R. Kelley & A. Spradling, 1988. Insertional mut-agenesis of the Drosophila genome with single P elements. Science 239: 1121–1128.PubMedCrossRefGoogle Scholar
  40. Crow, J. F. & M. J. Simmons, 1983. The mutation load in Drosophila, pp. 1–35 in The Genetics and Biology of Drosophila, edited by M. Ashburner, H. L. Carson & J. N., Jr. Thompson. Academic Press, London.Google Scholar
  41. Csink, A. K. & J. F. McDonald, 1989. Copia expression is variable among natural populations of Drosophila. Genetics 126: 375–385.Google Scholar
  42. Curio, M. J. & D. J. Garfinkel, 1991. Single-step selection for Tyl element retrotransposition. Proc. Natl. Acad. Sci. 88: 936–940.CrossRefGoogle Scholar
  43. Davis, P. S., M. W. Shen & B. H. Judd, 1987. Assymmetrical pairing of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proc. Natl. Acad. Sci. 84: 174–178.PubMedCrossRefGoogle Scholar
  44. Dooner, H. K. & A. Belachew, 1991. Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize. Genetics 129: 855–862.PubMedGoogle Scholar
  45. Eanes, W. F., C. Wesley, J. Hey, D. Houle & J. Ajioka, 1988. The fitness consequences of P element insertion in Drosophila melanogaster. Genet. Res. 52: 17–26.CrossRefGoogle Scholar
  46. Eanes, W. F., J. W. Ajioka, J. Hey & C. Wesley, 1989. Restriction-map variation associated with the G6PD polymorphism in natural populations of Drosophila melanogaster. Mol. Biol. Evol. 6: 384–397.PubMedGoogle Scholar
  47. Echalier, G., 1989. Drosophila retrotransposons; interactions with genome. Adv. Virus Res. 36: 33–105.PubMedCrossRefGoogle Scholar
  48. Eggleston, W. B., D. M. Johnson-Schlitz & W. R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families in Drosophila melanogaster. Nature 331: 368–370.PubMedCrossRefGoogle Scholar
  49. Engels, W. R., D. M. Johnson-Schlitz, W. B. Eggleston & J. Sved, 1990. High-frequency P element loss in Drosophila is homolog dependent. Cell 62: 515–525.PubMedCrossRefGoogle Scholar
  50. Finnegan, D. J., 1989. Eukaryotic transposable elements and genome evolution. Trends in Genet. 5: 103–107.CrossRefGoogle Scholar
  51. Fitch, W. M. & W. R. Atchley, 1985. Evolution of inbred strains of mice appears rapid. Science 228: 1169–1175.PubMedCrossRefGoogle Scholar
  52. Frankham, R., A. Torkamanzehi & C. Moran, 1991. P element transposon-induced quantitative genetic variation for inebriation time in Drosophila melanogaster. Theor. Apll. Genet. 81: 317–320.Google Scholar
  53. Frei, B., C. W. Stuber & M. M. Goodman, 1986. Use of allozymes as genetic markers for predicting performance in maize single cross hybrids. Crop. Science 26: 37–42.CrossRefGoogle Scholar
  54. Freund, R. & M. Meselson, 1984. Long terminal repeat nucleotide sequence and specific insertion of the gypsy transposon. Proc. Natl. Acad. Sci. 81: 4462–4464.PubMedCrossRefGoogle Scholar
  55. Georgiev, P. G., S. L. Kiselev, O. B. Simonova & T. I. Gerasimova, 1990. A novel transposition system in Drosophila melanogaster depending on the stalker mobile genetic element. EMBO J. 9: 2037–2044.PubMedGoogle Scholar
  56. Gerasimova, T. I., L. V. Matyunina, Y. V. Ilyin & G. P. Georgiev, 1984a. Simultaneous transposition of different mobile elements. Relation to multiple mutagenesis in Drosophila melanogaster. Mol. Gen. Genet. 194: 517–522.CrossRefGoogle Scholar
  57. Gerasimova, T. I., L. J. Mizrokhi & G. P. Georgiev, 1984b. Transposition bursts in genetically unstable Drosophila melanogaster. Nature 309: 714–716.CrossRefGoogle Scholar
  58. Goldberg, M. L., J.-Y. Sheen, W. J. Gehring & M. M. Green, 1983. Unequal crossing-over associated with asymmetrical synapsis between nomadic elements in the Drosophila melanogaster genome. Proc. Natl. Acad. Sci. 80: 5017–5021.PubMedCrossRefGoogle Scholar
  59. Golding, G. B., C. F. Aquadro & C. H. Langley, 1986. Sequence evolution within populations under multiple types of mutation. Proc. Natl. Acad. Sci. 83: 427–431.PubMedCrossRefGoogle Scholar
  60. Gridley, T., P. Soriano & R. Jaenisch, 1987. Insertional mutagenesis in mice. Trends in Genet. 3: 162–166.CrossRefGoogle Scholar
  61. Gvozdev, V. A., 1981. The nature and functions of intercalary heterochromatin in Drosophila melanogaster. In Molecular basis of genetic processes. Proc. XIV Int. Congr. Genet. 3: 257–271.Google Scholar
  62. Gvozdev, V. A., E. S. Belyaeva, Y. V. Ilyin, I. S. Amosova & L. Z. Kaidanov, 1981. Selection and transposition of mobile dispersed genes in Drosophila melanogaster. Cold Spring Harb. Symp. Quant. Biol. 45: 673–685.PubMedCrossRefGoogle Scholar
  63. Harada, K., A. Koga, S. Kusakabe & T. Mukai, 1988. A new family of mobile dispersed middle repetitive elements in Drosophila melanogaster. Proc. Japan Acad. 64: 193–196.CrossRefGoogle Scholar
  64. Harada, K., K. Yukuhiro & T. Mukai, 1990. Transposition rates of movable genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. 87: 3248–3252.PubMedCrossRefGoogle Scholar
  65. Harden, N. & M. Ashburner, 1990. Characterization of the FB-NOF transposable element of Drosophila melanogaster. Genetics 126: 387–400.PubMedGoogle Scholar
  66. Hey, J., 1989. The transposable portion of the genome of Drosophila algonquin is very different from that in Drosophila melanogaster. Mol. Biol. Evol. 6: 66–79.PubMedGoogle Scholar
  67. Hudson, A., R. Carpenter & E. S. Coen, 1987. De novo activation of the transposable element Tam2 of Antirrhinum majus. Mol. Gen. Genet. 207: 54–59.CrossRefGoogle Scholar
  68. Ikenaga, H. & K. Saigo, 1982. Insertion of movable genetic element, 297, into the T-A-T-A box for the H3 histone gene in Drosophila melanogaster. Proc. Natl. Acad. Sci. 79: 4143–4147.PubMedCrossRefGoogle Scholar
  69. Inouye, S., S. Yuki & K. Saigo, 1984. Sequence-specific insertion of the Drosophila transposable genetic element 17.6. Nature 310: 332–333.PubMedCrossRefGoogle Scholar
  70. Ising, B. & K. Block, 1981. Derivation-dependent distribution of insertion sites for a Drosophila transposon. Cold Spring Harb. Symp. Quant. Biol. 45: 527–544.PubMedCrossRefGoogle Scholar
  71. Jones, M. A., S. I. Fuerstenberg & C. A. Hennelly, 1990. Nonrandom chromosomal distribution of Ac-like sequences in inbred maize. Genet. Res. 55: 71–80.CrossRefGoogle Scholar
  72. Junakovic, N., R. Cavena & P. Ballario, 1984. Genomic distribution of copia-like elements in laboratory stocks of Drosophila melanogaster. Chromosoma 90: 378–382.CrossRefGoogle Scholar
  73. Junakovic, N., C. Di Franco, P. Barsanti & G. Palumbo, 1987. Transposition of copia-like nomadic elements can be induced by heat-shock. J. Mol. Evol. 24: 89–93.CrossRefGoogle Scholar
  74. Junakovic, N., C. Di Franco, M. Best-Belpomme & G. Echalier, 1988. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97: 212–218.PubMedCrossRefGoogle Scholar
  75. Kaplan, N. L. & J. F. Y. Brookfield, 1983. Transposable elements in mendelian populations. III. Statistical results. Genetics 104: 485–495.PubMedGoogle Scholar
  76. Kim, A. I., E. S. Belyaeva & M. M. Aslanian, 1990. Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol. Gen. Genet. 224: 303–308.PubMedCrossRefGoogle Scholar
  77. Kim, A. I. & E. S. Belyaeva, 1991. Transposition of mobile elements gypsy (mdg4) and hobo in germ-line and somatic cells of a genetically unstable mutator strain of Drosophila melanogaster. Mol. Gen. Genet. 229: 437–444.PubMedCrossRefGoogle Scholar
  78. Langley, C. H. & C. F. Aquadro, 1987. Restriction map variation in natural populations of Drosophila melanogaster: white locus region. Mol. Biol. Evol. 4: 651–663.PubMedGoogle Scholar
  79. Langley, C. H., J. F. Y. Brookfield & N. L. Kaplan, 1983. Transposable elements in mendelian populations. I. A theory. Genetics 104: 457–472.Google Scholar
  80. Langley, C. H., E. A. Montgomery, R. Hudson, N. L. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–236.PubMedCrossRefGoogle Scholar
  81. Langley, C. H., E. A. Montgomery & W. F. Quattlebaum, 1982. Restriction map variation in the Adh region of Drosophila. Proc. Natl. Acad. Sci. 79: 5631–5635.PubMedCrossRefGoogle Scholar
  82. Laurie-Ahlberg, C. C. & L. F. Stam, 1987. Use of P-element-mediated transformation to identify the molecular basis of naturally occurring variants affecting Adh expression in Drosophila melanogaster. Genetics 115: 129–140.PubMedGoogle Scholar
  83. Lee, M. & R. L. Phillips, 1988. The chromosomal basis of somaclonal variation. Ann. Rev. Plant Physiol. 39: 413–437.CrossRefGoogle Scholar
  84. Leigh-Brown, A. J. & J. E. Moss, 1987. Tranposition of the I element and copia in a natural population of Drosophila melanogaster. Genet. Res. 49: 121–128.CrossRefGoogle Scholar
  85. Leigh-Brown, A.J., S. J. Ross, L. S. Alphey, A. J. Flavell & T. Gerasimova, 1989. Instability in the ctMR2 strain of Drosophila melanogaster: role of P element functions and structure of revertants. Mol. Gen. Genet. 218: 208–213.CrossRefGoogle Scholar
  86. Lewontin, R. C, 1974. The genetic basis of evolutionary changes. Columbia University Press, N.Y.Google Scholar
  87. Lewontin, R. C, 1985. Population genetics. Ann. Rev. Genet. 19: 81–102.PubMedCrossRefGoogle Scholar
  88. Lillis, M. & M. Freeling, 1986. Mu transposons in maize. Trends in Genet. 2: 183–188.CrossRefGoogle Scholar
  89. Lim, J. K., 1988. Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc. Natl. Acad. Sci. 85: 9153–9157.PubMedCrossRefGoogle Scholar
  90. Lim, J. K., M. J. Simmons, J. D. Raymond, N. M. Cox, R. F. Doll & T. P. Culbert, 1983. Homologue destabilisation by a putative transposable element in Drosophila melanogaster. Proc. Natl. Acad. Sci. 80: 6624–6627.PubMedCrossRefGoogle Scholar
  91. Mackay, T. F. C, 1985. Transposable element-induced response to artificial selection in Drosophila melanogaster. Genetics 111: 351–374.PubMedGoogle Scholar
  92. Mackay, T. F. C, 1987. Transposable element-induced polygenic mutations in Drosophila melanogaster. Genet. Res. 49: 225–233.CrossRefGoogle Scholar
  93. Mackay, T. F. C, 1989. Transposable elements and fitness in Drosophila melanogaster. Genome 31: 284–295.PubMedCrossRefGoogle Scholar
  94. McDonald, J. F., 1989. The potential evolutionary significance of retroviral-like transposable elements in peripheral populations, pp. 190–205 in Evolutionary Biology of Transient Unstable Populations, edited by A. Fontdevila. Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
  95. McDonald, J. F., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.CrossRefGoogle Scholar
  96. McEntee, K. & V. A. Bradshaw, 1988. Effects of DNA damage on transcription and transposition of Ty retrotransposons of yeast, pp. 245–254 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald & I. B. Weinstein, Cold Spring Harbor Press. Cold Spring Harbor, N.Y.Google Scholar
  97. Mével-Ninio, M. C. Mariol & M. Gans, 1989. Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovoD dominant femalesterile mutations: molecular analysis of revertant alleles. EMBO J. 8: 1549–1558.PubMedGoogle Scholar
  98. Montgomery, E. A., B. Charlesworth & C. H. Langley, 1987. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49: 31–41.PubMedCrossRefGoogle Scholar
  99. Montgomery, E. A. & C. H. Langley, 1983. Transposable elements in Mendelian populations: II Distribution of three copia-like elements in a natural population of Drosophila melanogaster. Genetics 104: 473–483.PubMedGoogle Scholar
  100. Moran, C. & A. Torkamanzehi, 1990. P elements and quantitative variation in Drosophila, pp. 99–117 in Ecological and Evolutionary Genetics of Drosophila, edited by J. S. F. Barker, W. T. Starmer & R. J. MacIntyre. Plenum, N.Y.Google Scholar
  101. Mukai, T. & C. C. Cockerham, 1977. Spontaneous mutation rates of isozyme genes in Drosophila melanogaster. Proc. Natl. Acad. Sci. 74: 2514–2517.PubMedCrossRefGoogle Scholar
  102. O'Hare, K. & G. M. Rubin, 1983. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34: 25–35.PubMedCrossRefGoogle Scholar
  103. Pardue, M. L., 1991. Dynamic instability of chromosomes and genomes. Cell 66: 427–431.PubMedCrossRefGoogle Scholar
  104. Pasyukova, E. G., E. S. Belyaeva, G. L. Kogan, L. Z. Kaidanov & V. A. Gvozdev, 1986. Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol. Biol. Evol. 3: 299–312.PubMedGoogle Scholar
  105. Pasyukova, E. G., E. S. Belyaeva, L. E. llyinskaya & V. A. Gvozdev, 1988. Outcross-dependent transpositions of copialike mobile genetic elements in chromosomes of an inbred Drosophila melanogaster stock. Mol. Gen. Genet. 212: 281–286.CrossRefGoogle Scholar
  106. Pélisson, A. & J.-C. Brégliano, 1987. Evidence for rapid limitation of the I element copy number in a genome submitted to several generations of I-R hybrid dysgenesis in Drosophila melanogaster. Mol. Gen. Genet. 207: 306–313.CrossRefGoogle Scholar
  107. Pierce, D. A. & J. C. Lucchesi, 1981. Analysis of a dispersed repetitive DNA sequence in isogenic lines of Drosophila melanogaster. Chromosome 82: 471–492.CrossRefGoogle Scholar
  108. Potter, S. S., W. J. Brorein, P. Dunsmuir & G. M. Rubin, 1979. Transposition of elements of the 412, copia, and 297 dispersed repeated gene families in Drosophila. Cell 17: 415–427.PubMedCrossRefGoogle Scholar
  109. Preston, C. R. & W. R. Engels, 1984. Movements of P elements within a P strain. Droso. Infor. Serv. 60: 169–170.Google Scholar
  110. Ronsseray, S. & D. Anxolabéhère, 1986. Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94: 433–440.CrossRefGoogle Scholar
  111. Ronsseray, S., M. Lehmann & D. Anxolabéhère, 1989. Distribution of P and I mobile elements copy number in Drosophila melanogaster populations. Chromosoma 98: 207–214.PubMedCrossRefGoogle Scholar
  112. Ronsseray, S., M. Lehmann & D. Anxolabéhère, 1991. The maternally inherited regulation of P elements in Drosophila melanogaster can be elicited by two P copies at cytological site 1A on the X chromosome. Genetics 129: 501–512.PubMedGoogle Scholar
  113. Rose, M. R. & W. F. Doolittle, 1983. Molecular biological mechanisms of speciation. Science 200: 157–161.CrossRefGoogle Scholar
  114. Rubin, G., M. G. Kidwell & P. M. Bingham, 1982. The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29: 987–994.PubMedCrossRefGoogle Scholar
  115. Salinas, J., M. Zerial, J. Filipski, M. Crepin & G. Bernardi, 1987. Nonrandom distribution of MMTV proviral sequences in the mouse genome. Nucleic Acid Res. 15: 3009–3022.PubMedCrossRefGoogle Scholar
  116. Scheinker, V. S., E. R. Lozovskaya, J. G. Bishop, V. G. Corces & M. B. Evgen'ev, 1990. A long terminal repeat-containing retrotransposon is mobilized during hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. 87: 9615–9619.PubMedCrossRefGoogle Scholar
  117. Shevelyov, Y. Y., M. D. Balakireva & V. A. Gvozdev, 1989. Heterochromatic regions in different Drosophila melanogaster stocks contain similar arrangements of moderate repeats with inserted copia-like elements (MDG1). Chromosoma 98: 117–122.CrossRefGoogle Scholar
  118. Shih, C.-C, J. P. Stoye & J. M. Coffin, 1988. Highly preferred targets for retrovirus integrations. Cell 53: 531–537.PubMedCrossRefGoogle Scholar
  119. Shrimpton, A. E., T. F. C. Mackay & A. J. Leigh Brown, 1990. Transposable element-induced response to artificial selection in Drosophila melanogaster. molecular analysis of selection lines. Genetics 125: 803–811.PubMedGoogle Scholar
  120. Simmons, M. J. & J. F. Crow, 1977. Mutation affecting fitness in Drosophila populations. Ann. Rev. Genet. 11: 49–78.PubMedCrossRefGoogle Scholar
  121. Simmons, M. J., J. D. Raymond, T. R. Laverty, R. F. Doll, N. C. Raymond, G. J. Kocur & E. A. Drier, 1985. Chromosomal effects on mutability in the P-M system of hybrid dysgenesis in Drosophila melanogaster. Genetics 111: 869–884.PubMedGoogle Scholar
  122. Spradling, A. C. & G. M. Rubin, 1983. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell 34: 47–57.PubMedCrossRefGoogle Scholar
  123. Strand, D. J. & J. F. McDonald, 1985. Copia is transcriptionally responsive to environmental stress. Nucleic Acid Res. 13: 4401–4410.PubMedCrossRefGoogle Scholar
  124. Strauss, S. H., 1986. Heterosis at allozyme loci under inbreeding and crossbreeding in Pinus attenuata. Genetics 113: 115–134.PubMedGoogle Scholar
  125. Strobel, E., P. Dunsmuir & G. M. Rubin, 1979. Polymorphism in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17: 429–439.PubMedCrossRefGoogle Scholar
  126. Suh, D. S. & T. Mukai, 1990. The genetic structure of natural populations of Drosophila melanogaster. XXIV. Effects of hybrid dysgenesis on the components of genetic variance of viability. Genetics 127: 545–552.Google Scholar
  127. Sved, J. A., L. M. Blackman, A. S. Gilchrist & W. R. Engels, 1991. High levels of recombination induced by homologous P elements in Drosophila melanogaster. Mol. Gen. Genet. 225: 443–447.PubMedCrossRefGoogle Scholar
  128. Tanda, S., A. E. Shrimpton, C. Ling-Ling, H. Itayama, H. Mat-subayashi, K. Saigo, Y. N. Tobari & C. H. Langley, 1988. Retrovirus-like features and site specific insertions of a transposable element torn in Drosophila ananassae. Mol. Gen. Genet. 214: 405–411.PubMedCrossRefGoogle Scholar
  129. Taruscio, D. & L. Manuelidis, 1991. Integration site preferences of endogenous retroviruses. Chromosoma 101: 141–156.PubMedCrossRefGoogle Scholar
  130. Terzian, C. & C. Biémont, 1988. The founder effect theory: quantitative variation and mdg-1 mobile element polymorphism in experimental populations of Drosophila melanogaster. Genetica 76: 53–63.PubMedCrossRefGoogle Scholar
  131. Tobari, I. & M. Murata, 1970. Effect of X-rays on genetic loads in a cage population of Drosophila melanogaster. Genetics 65: 107–119.PubMedGoogle Scholar
  132. Voelker, R. A., J. Graves, W. Gibson & M. Eisenberg, 1990. Mobile element insertions causing mutations in the Drosophila suppressor of sable locus occur in DNase I hypersensitive subregions of 5'-transcribed nontranslated sequences. Genetics 126: 1071–1082.PubMedGoogle Scholar
  133. Whiting, J. H., Jr, J. L. Farmer & D. E. Jeffery, 1987. Improved in situ hybridization and detection of biotin-labeled D. melanogaster DNA probes hybridized to D. virilis salivary gland chromosomes. Droso. Infor. Serv. 66: 170–171.Google Scholar
  134. Wolf. K. H., P. M. Sharp & W. H. Li, 1989. Mutation rates differ among regions of the mammalian genome. Nature 337: 283–285.CrossRefGoogle Scholar
  135. Woodruff, R. C, J. L. Blount & J. N. Jr. Thompson, 1987. Hybrid dysgenesis in Drosophila melanogaster is not a general release mechanism for DNA transpositions. Science 237: 1206–1207.PubMedCrossRefGoogle Scholar
  136. Xu, H. & J. D. Boeke, 1991. Inhibition of Tyl transposition by mating pheromones in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 2736–2743.PubMedGoogle Scholar
  137. Yamaguchi, O., T. Yamazaki, K. Saigo, T. Mukai & A. Robertson, 1987. Distribution of three transposable elements, P, 297, and copia in natural populations of Drosophila melanogaster. Jpn. J. Genet. 62: 205–216.CrossRefGoogle Scholar
  138. Young, M. V. & H. E. Schwartz, 1981. Nomadic gene families in Drosophila. Cold Spring Harb. Symp. quant. Biol. 45: 629–640.PubMedCrossRefGoogle Scholar
  139. Yukuhiro, K., K. Harada & T. Mukai, 1985. Viability mutations induced by the P elements in Drosophila melanogaster. Jpn. J. Genet. 60: 531–537.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • C. Biémont
    • 1
  1. 1.Laboratoire de BiométrieGénétique et Biologie des PopulationsVilleurbanneFrance

Personalised recommendations