Skip to main content

Evolution of the transposable element Uhu in five species of Hawaiian Drosophila

  • Chapter
Transposable Elements and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 1))

  • 235 Accesses

Abstract

The complete DNA sequence of three independent isolates of Uhu, a member of the Tc1-like class of transposable elements from D. heteroneura (Uhu-1, Uhu-3, and Uhu-4), has been determined. These isolates have between 95 and 96.4% nucleotide sequence identity indicating that Uhu is well conserved within this species. A comparison of the DNA sequences of Uhu and the D. melanogaster Hb1 transposable element shows that the nucleotide substitution rate for Uhu is comparable to the synonymous rate for the Adh gene in these species. Uhu has been identified in four other species of endemic Hawaiian Drosophila, D. silvestris, D. differens, D. planitibia and D. picticornis, and nine Uhu elements were isolated from genomic libraries of these four species. A 444 base pair region from within the coding region of the Uhu element, with well conserved ends, was amplified by the Polymerase chain reaction and used for sequence comparison of elements from different species. The analysis of the sequence similarities between the elements within and between the species shows a grouping of the two pairs of most closely related species (D. heteroneura and D. silvestris, and D. differens and D. planitibia), but shows a much larger variation within the most recently diverged species (D. heteroneura and D. silvestris) than expected. There are extensive nucleotide substitutions and deletions in the Uhu elements from D. picticornis showing that they are degenerating and being lost in this species. These observations indicate that the Uhu element has been transmitted vertically and that transposition may have been activated at the time of formation of each species as it colonized the newly formed islands of the Hawaiian archipelago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biémont C. & C. Gautier 1988. Localisation poymorphism of mdg-1 copia I and P mobile elements in genomes of Drosophila melanogaster from data of inbred lines. Heredity 60: 335–34

    Article  Google Scholar 

  • Biémont, C, S. Ronsseray, D. Anxolabéhère, H. Izaabel & C. Gauthier, 1990a. Localization of P elements, copy nymber regulation, and cytotype determination in Drosophila melanogaster. Genet. Res. Camb. 56: 3–14.

    Article  Google Scholar 

  • Biémont, C, C. Arnault, A. Heizmann & S. Ronsseray, 1990b. Massive changes in genomic locations of P elements in an inbred line of Drosophila melanogaster. Naturwissenschaften 77: 485–488.

    Article  PubMed  Google Scholar 

  • Bingham, P. M., M. G. Kidwell & G. M Rubin, 1982. The molecular basis of P-M dysgenesis: The role of the P element, a P-strain-specific transposon family. Cell 29: 995–1004.

    Article  PubMed  CAS  Google Scholar 

  • Bingham, P. M. & Z. Zachar, 1989. Retrotransposons and the FB transposon from Drosophila melanogaster, pp 485–502 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology. Washington, D.C.

    Google Scholar 

  • Bishop, J. G. B. III & J. A. Hunt, 1988. DNA divergence in and around the alcohol dehydrogenase locus in five closely related species of Hawaiian Drosophila Mol. Biol. Evol. 5: 415–531.

    CAS  Google Scholar 

  • Breathnach, R. & P. Chambon, 1981. Organization and expression of eukaryotic split genes coding for proteins. Ann. Rev. Biochem. 50: 349–383.

    Article  PubMed  CAS  Google Scholar 

  • Brezinsky, L., G. V. L. Wang, T. Humphreys & J. Hunt, 1990. The transposable element Uhu from the Hawaiian Drosophila — A member of the widely dispersed class of Tc1-like transposons. Nucl. Acids Res. 8: 2053–2059.

    Article  Google Scholar 

  • Brierly, H. L. & S. S. Potter, 1985. Distinct characteristics of loop sequences of two Drosophila foldback transposable elements. Nucl. Acids Res. 13: 485–500.

    Article  Google Scholar 

  • Brookfield, J. F. Y., 1986. A model for DNA sequence evolution within transposable element families. Genetics 112: 393–407.

    PubMed  CAS  Google Scholar 

  • Cabot, E. L. & A. T. Beckenbach, 1989. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Computer Applications in the Biosciences 5: 233–234.

    Article  PubMed  CAS  Google Scholar 

  • Carson, H. L. & A. R. Templeton, 1984. Genetic revolutions in relation to speciation phenomena: The founding of new populations. Ann. Rev. Ecol. Syst. 15: 97–131.

    Article  Google Scholar 

  • Carson, H. L. & J. S. Yoon, 1982. Genetics and evolution of Hawaiian Drosophila, pp. 297–344 in The Genetics and Biology of Drosophila, Vol. 3b, edited by M. Ashburner, H. L. Carson and J. N. Thompson Jr. Academic Press. New York.

    Google Scholar 

  • Carson, H. L. & R. G. Wisotzkey, 1989. Increase in genetic variance following a population bottleneck. Am. Natur. 134: 668–673.

    Article  Google Scholar 

  • Charlesworth, B., 1986. Genetic divergence between transposable elements. Genet. Res. Camb. 48: 111–118.

    Article  CAS  Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable elements. Ann. Rev. Genet. 23: 251–287.

    Article  PubMed  CAS  Google Scholar 

  • Craddock, E. M. & W. E. Johnson, 1979. Genetic variation in Hawaiian Drosophila. Chromosomal and allozyme diversity in D. silvestris and its homosequential species. Evolution 33: 137–155.

    Article  Google Scholar 

  • Dale, R. M. K., B. A. McClure & J. P. Houchins, 1985. A new procedure for producing a sequential series of overlapping clones for use in DNA sequencing. Plasmid 13: 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, S.B., K. R. Peterson, L. D. Strausbaugh, M. G. Kidwell & A. R. Chovnick, 1990. Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124: 339–355.

    PubMed  CAS  Google Scholar 

  • DeSalle, R. & V. Giddings, 1986. Discordance of nuclear and mitochondrial DNA phylogenies in Hawaiian Drosophila. Proc. Natl. Acad. Sci. USA 83: 6902–6906.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W. R., 1989. P elements in Drosophila, pp. 437–484 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society of Microbiology, Washington, D.C.

    Google Scholar 

  • Felsenstein, J., 1984. Distance methods for inferring phylogenies: a justification Evolution 38: 16–24.

    Article  Google Scholar 

  • Felsenstein, J., 1988. Phylogenies from molecular sequences: Inferences and reliability. Ann. Rev. Genet. 22: 521–565.

    Article  PubMed  CAS  Google Scholar 

  • Hagenbiichle, O., R. Bovey & R. A. Young, 1980. Tissuespecific expression of Mouse alpha-amylase genes: Nucleotide sequence of isozyme mRNAs from pancreas and salivary gland. Cell 21: 179–187.

    Article  Google Scholar 

  • Harris, L. J., D. L. Baillie & A. M. Rose, 1988. Sequence identity between an inverted repeat family of transposable elements in Drosophila and Caenorhabditis. Nucl. Acids Res. 16: 5991–5999.

    Article  PubMed  CAS  Google Scholar 

  • Harris, L. J., S. Prasad & A. M. Rose, 1990. Isolation and sequence analysis of C. briggsae repetitive elements related to the C. elegans transposon Tc1. J. Mol. Evol. 30: 359–369.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, R. R. & N. L. Kaplan, 1986. On the divergence of members of a transposable element.

    Google Scholar 

  • Hunt, J. A. & H. L. Carson, 1983. Evolutionary relationship of four species of Hawaiian Drosophila as measured by DNA reassociation. Genetics 104: 353–364.

    PubMed  CAS  Google Scholar 

  • Hunt, J. A., J. G. Bishop III & H. L. Carson, 1984. Chromosomal mapping of a middle-repetitive DNA sequence in a cluster of five species of Hawaiian Drosophila. Proc. Natl. Acad. Sci. USA 81: 7146–7150.

    Article  PubMed  CAS  Google Scholar 

  • Kaneshiro, K. Y, 1976. Ethological isolation and phylogeny of the planitibia subgroup of Hawaiian Drosophila. Evolution 30: 740–745.

    Article  Google Scholar 

  • Kimura, M., 1980. A simple method for estimating the evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.-H., C.-I. Wu & C.-C. Luo, 1985. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2: 150–174.

    PubMed  Google Scholar 

  • Liao, L. W., B. Rosenzweig & D. Hirsh, 1983. Analysis of a transposable element in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 80: 3585–3589.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Cruzado, J. C, 1990. Evolution of the autosomal cluster in Drosophila. IV. The Hawaiian Drosophila: Rapid protein evolution and constancy in the rate of DNA divergence. J. Mol. Evol. 31: 402–423.

    Article  PubMed  Google Scholar 

  • Maruyama, K. & D. L. Hartl, 1991a. Evolution of the transposable element mariner in Drosophila species. Genetics 128: 319–329.

    PubMed  CAS  Google Scholar 

  • Maruyama, K. & D. L. Hartl, 1991b. Interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J. Mol. Evol. (in press).

    Google Scholar 

  • Mayr, E., 1963. Animal species and evolution. Harvard University Press.

    Google Scholar 

  • McDonald, J. F., 1989. The potential evolutionary significance of retroviral-like transposable elements in peripheral populations, pp. 190–205 in Evolutionary biology of transient unstable populations, edited by A. Fontdevilla. Springer-Verlag. New York.

    Chapter  Google Scholar 

  • McDonald, J. F., 1990. Macroevolution and retroviral elements. Bioscience 40: 183–191.

    Article  Google Scholar 

  • McDonald, J. F., D. J. Strand, M. R. Brown, S. M. Paskewitz, A. R. Csink & S. H. Voss, 1988. Evidence of Host-mediated regulation of retroviral element expression at the post-transcriptional level, pp. 219–314 in Eukaryotic transposable elements as mutagenic agents, edited by M. E. Lambert, J. F. McDonald, and I. B. Weinstein. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • McDonald, J. F., D. J. Strand, M. E. Lambert & I. B. Weinstein, 1987. The responsive genome: Evidence and evolutionary implications, pp. 239–263 in Development as an Evolutionary Process, edited by R. Rault and E. Rault. Allan R. Liss, New York.

    Google Scholar 

  • McDougall, I., 1969. Potassium-argon ages from lavas of the Hawaiian Islands. Bull. Geol. Soc. Am. 80: 2597–2600.

    Article  CAS  Google Scholar 

  • Mead, D. A. & B. Kemper, 1986. Chimeric single stranded DNA phage-plasmid cloning vectors, pp. 85–102 in Vectors. A survey of molecular cloning vectors and their uses, edited by R. L. Rodriguez and D. T. Denhardt. Butterworths Publishers. Boston, MA.

    Google Scholar 

  • Nakajima, N., M. Horikoshi & R. Roeder, 1988. Factors involved in specific transcription by mammalian RNA polymerase II: Purification, genetic specificity, and TATA box-promoter interactions of TFIID. Mol. Cell. Biol. 8: 4028–4040.

    PubMed  CAS  Google Scholar 

  • Nei, M., T. Maruyama & R. Chakraborty, 1987. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.

    Article  Google Scholar 

  • Nocera, P. P. D. & Y. Sakaki, 1990. LINEs: a super family of retrotransposable ubiquitous DNA elements. Trends in Genetics 6: 29–30.

    Article  PubMed  Google Scholar 

  • Ohta, T., 1986. Population genetics of an expanding family of mobile genetic elements. Genetics 113: 145–159.

    PubMed  CAS  Google Scholar 

  • Prakash, S., 1972. Origin and reproductive isolation in the absence of apparent genic differentiation in a geographic isolate of Drosophila pseudoobscura. Genetics 72: 143–155.

    PubMed  CAS  Google Scholar 

  • Proudfoot, N. J. & G. G. Brownlee, 1976. 3' Non-coding region sequences in eukaryotic messenger RNA. Nature 263: 211–214.

    Article  PubMed  CAS  Google Scholar 

  • Rowan, R. G. & J. A. Hunt, 1991. Rates of DNA change and phyologeny from the DNA sequence of the Adh gene from five closely related species of Hawaiian Drosophila. Mol. Biol. Evol. 8: 49–70.

    PubMed  CAS  Google Scholar 

  • Sanger, F., S. Nicklen & A. R. Coulson, 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Sene, F. M. & H. L. Carson, 1977. Generic variation in Hawaiian Drosophila. IV Allozymic similarity between D. silvestris and D. heteroneura from the island of Hawaii. Genetics 86: 187–189.

    PubMed  CAS  Google Scholar 

  • Sheldon, F. H., 1987. Rates of single-copy DNA evolution in Herons. Mol. Biol. Evol. 4: 56–69.

    PubMed  CAS  Google Scholar 

  • Slatkin, M., 1985. Genetic differentiation of transposable elements under mutation and unbiased gene conversion. Genetics 110: 145–158.

    PubMed  CAS  Google Scholar 

  • Spieth, H. T., 1981. Drosophila heteroneura and Drosophila silvestris: Head shapes, behaviors and evolution. Evolution 35: 921–930.

    Article  Google Scholar 

  • Thomas, R. H. & J. A. Hunt, 1991. The molecular evolution of the alcohol dehydrogenase locus and the phytogeny of Hawaiian Drosophila. Mol. Biol. Evol. 8: 687–702.

    PubMed  CAS  Google Scholar 

  • Wu, C.-I. & W.-H. Li, 1985. Evidence for higher rates of substitution in rodents than in man. Proc. Natl. Acad. Sci. 82: 1741–1745.

    Article  PubMed  CAS  Google Scholar 

  • Zeletsova, E. S., R. O. Vashakidze, A. S. Krayev & M. B. Evgen'ev, 1986. Dispersed repeats in Drosophila virilis: Elements mobilized by interspecific hybridization. Chromosoma 93: 469–476.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. F. McDonald

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brezinsky, L., Humphreys, T.D., Hunt, J.A. (1993). Evolution of the transposable element Uhu in five species of Hawaiian Drosophila . In: McDonald, J.F. (eds) Transposable Elements and Evolution. Contemporary Issues in Genetics and Evolution, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2028-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2028-9_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4897-2

  • Online ISBN: 978-94-011-2028-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics